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Abstract. The p-Willmore energy Wp, which extends the venerable Will-
more energy by accommodating different powers of the mean curvature in
its integrand, is a relevant geometric functional that bears both similarities
and differences to its namesake. To elucidate this, some recent results in this
area are surveyed. In particular, the first and second variations of Wp are
given, and a flux formula is presented which reveals a connection between its
critical points and the minimal surfaces. Finally, a model for the p-Willmore
flow of graphs is presented, and this connection is visualized through com-
puter implementation.
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1. Introduction

An important conformal invariant of immersed surfaces in R3 is known as the
Willmore energy

W2(Σ) =

∫
Σ
H2 dS

which measures the failure of the surface Σ to be totally umbilic. Besides being
the object of much mathematical study in recent decades (e.g. [3, 7, 10, 15, 16]
and references), the Willmore energy has also demonstrated its utility in fields
such as biology and biophysics, where adaptations like the Helfrich model for
biomembranes have proven to be highly accurate models of observable behavior
[8]. Due to this mathematical and physical relevance, it is reasonable to consider
an extension of this functional which incorporates different powers of the mean
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curvatureH = (1/2)(κ1+κ2) in the integrand. In particular, it is natural to wonder
what similarities or differences are observed as the exponent ofH changes. To that
end, recall the p-Willmore energy introduced in [7]

Wp(Σ) =

∫
Σ
Hp dS, p ∈ Z≥0.

This functional, which reduces to the Willmore functional when p = 2, includes
the important surface area and total mean curvature functionals as the cases p =
0, 1 respectively, while also extending the notion of Willmore energy to any posi-
tive integer power.

Remark 1. Note that this definition can be extended to arbitrary real exponents
by considering the unsigned quantity |H|p in the integrand.

At first glance, it is clear that there are fundamental differences between the mini-
mizers of, say, the surface area and the Willmore energy. For example, any minimal
surface is Willmore, but the converse is certainly untrue. Indeed, the round sphere
is not minimal, yet it is globally minimizing for the Willmore energy among closed
surfaces of genus 0 [16]. It is therefore reasonable to ponder: does this dissimilar-
ity extend to higher powers of p?. This survey paper will highlight that, in some
sense, it does not. In particular, it follows from results here that when p > 2, any
p-Willmore surface with H ≡ 0 on its boundary must be minimal. This suggests
that the theory of p-Willmore surfaces when p > 2 is intimately related to the
well-studied theory of minimal surfaces, which is a welcome connection. Since
many interesting properties of minimal surfaces are already known, it is hopeful
that more results of this nature will be discovered in the future.

2. The Variation of p-Willmore Energy

Since variational calculus provides useful analytical tools for studying the critical
points of geometric functionals likeWp, it is advantageous to carry out some com-
putations which will generate necessary conditions that p-Willmore surfaces must
satisfy. To this end, let Σ be a surface (with or without boundary) and consider a
one-parameter family r of compactly supported immersions of Σ into an ambient
space form M3(k0) of constant sectional curvature k0. By reparametrizing if nec-
essary, it may be assumed that r : Σ × (−ε, ε) → M3(k0) is expressed normally
to the surface as r(x, t) = r0(x) + t u(x)n(x) where u : Σ → R is a smooth
function and n : Σ → S2 is a unit normal field. If applicable, it may also be
assumed that dr(T∂Σ) = dr0(T∂Σ) for each t, so that the variation fixes the tan-
gent space at the boundary. With this in place, the first and second variations of the
p-Willmore energy can be computed as in [7]. For the convenience of the reader,
some computational details are recalled in the following Lemma.
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Lemma 2. Let ε > 0 and r : Σ × (−ε, ε) → M3(k0) be a smooth family of
compactly supported immersions of a surface Σ evolving with normal velocity
δr = un where δ = (d/dt)

∣∣
t=0

is the variational derivative operator. Then,
there are the following evolution equations

δg = −2uh, δg−1 = 2u ĥ, δ(dS) = −2Hu dS,

δ(2H) = ∆u+ 2u(2H2 −K + 2k0), δK = 2H∆u− 〈h,Hessu〉+ 2HKu,

δ(∆f) = ∆ḟ + 2u〈h,Hess f〉+ 2u〈∇H,∇f〉+ 2h(∇u,∇f)− 2H〈∇u,∇f〉,

where f : M×R→ R is smooth, dS is the volume form on Σ, ∆u is the Laplacian
of u with respect to the surface metric g, 〈h,Hessu〉 is the scalar product between
the second fundamental form h : TΣ × TΣ → R and the Hessian of u, and ĥ is
the (2,0)-tensor g−1 · g−1 · h formed by twice contracting the shape operator with
the metric inverse.

Proof: The proof is purely computational, and can be found e.g. in [7]. �

Using Lemma 2, a lengthy but straightforward computation then yields the first
two variations of the p-Willmore energy.

Proposition 3. The first variation ofWp is given by

δ

∫
Σ
Hp dS =

∫
Σ

(p
2
Hp−1∆u+ (2H2 −K + 2k0)pHp−1u− 2Hp+1u

)
dS.

Moreover, the second variation ofWp at a critical immersion is

δ2

∫
Σ
Hp dS =

∫
Σ

p(p− 1)

4
Hp−2(∆u)2 dS

+

∫
Σ
pHp−1

(
h(∇u,∇u) + 2u〈h,Hessu〉+ u〈∇H,∇u〉 −H|∇u|2

)
dS.

+

∫
Σ

(
(2p2 − 4p− 1)Hp − p(p− 1)KHp−2 + 2p(p− 1)k0H

p−2

)
u∆u dS

+

∫
Σ

(
4p(p− 1)Hp+2 − 2(p− 1)(2p+ 1)KHp + p(p− 1)K2Hp−2

+ 4(2p2 − 2p− 1)k0H
p − 4p(p− 1)k0KH

p−2 + 4p(p− 1)k2
0H

p−2

)
u2 dS.

Remark 4. When Σ is closed, we recover the Euler-Lagrange equation
p

2
∆Hp−1 + p(2H2 −K + 2k0)Hp−1u− 2Hp+1u = 0

which characterizes p-Willmore surfaces as critical points of the first variation.
This reduces to the well-known (see e.g. [3]) Willmore equation when p = 2 and
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the ambient space is R3

∆H + 2H(H2 −K) = 0.

These expressions are previously known for the Willmore case p = 2 (c.f [15]),
and can be recovered from general expressions in [14] when the ambient space is
Euclidean. However, the expressions above have the advantage of being expressed
entirely in terms of the basic geometric invariants that arise from the surface fun-
damental forms, making them quite accessible for computation. The utility of this
aspect will be made clear in the next sections, where p-Willmore surfaces with
boundary are discussed.

3. A BVP for p-Willmore Surfaces

An interesting class of problems arises when considering p-Willmore surfaces with
prescribed boundary data. Several studies have previously been done on boundary-
value problems for the surface area functional (e.g. [9, 13] and references) as well
as for the Willmore functional (e.g. [5, 12] and references), so it is natural to
consider how such problems behave for values of p different from 0 or 2. As it
turns out, it can happen that the behavior of H on the boundary of a Wp-critical
surface Σ completely controls what happens on its interior. More precisely, we
have proven the following result in [6].

Theorem 5. When p > 2 is an integer, any p-Willmore surface Σ ⊂ R3 with
boundary satisfying H = 0 on ∂Σ must be minimal.

This result is in obvious contrast to the case p = 2, where there are several known
examples of non-minimal Willmore surfaces with zero boundary values e.g. [5].
To sketch its proof, we first mention a flux formula that can be computed from the
first variation ofWp using an appropriate choice of test function.

Lemma 6. Let n be a unit normal to the surface Σ ⊂ R3 and η the appropriately-
oriented unit conormal to ∂Σ. Then (omitting volume elements), the following flux
formula holds

2(p− 2)

p

∫
Σ
Hp =

∫
∂Σ
∇η(Hp−1)〈r,n〉 −Hp−1

(
〈∇ηn, r〉+ (2/p)H〈r,η〉

)
.

Proof: See [6] for a derivation. �

Theorem 5 follows quickly from this formula, as enforcingH = 0 on the boundary
shows that the integral of some power of the mean curvature must be zero on the
interior, and a short argument considering the positive and negative regions of H
separately establishes the statement.
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Remark 7. Interestingly, it is also evident from Lemma 6 that there can be no
closed p-Willmore surfaces immersed in R3 when p > 2. For if there were, Hp

would have to vanish in the interior, and a similar argument yields that the sur-
face must be minimal. However, there are no closed minimal surfaces in R3, a
contradiction.

4. Computational p-Willmore Flow of Graphs

Many noteworthy examples of surfaces with boundary immersed in R3 arise as
the graph of a smooth function u : R2 → R. To illustrate some of the p-Willmore
results that have been surveyed so far, it is useful to describe how such surfaces can
be modeled using a computer. Taking inspiration from [1], this will be discussed
in the context of the p-Willmore flow problem, where the goal is to find a surface
parametrization

r(x, t) = (x, u(x, t))T

such that ṙ = −δWp for all t in some interval (0, τ ]. In this case, the basic
geometry on Σ can be expressed as follows.

Lemma 8. Let Σ = {(x, u(x)) ; x ∈ Ω} be a surface given as the graph of a
function u : Ω ⊂ R2 → R, let I denote identity on R3, and let A :=

√
det g

denote the induced area element on Σ. Then, with the choice of unit normal vector
N = (1/A)(∇u,−1)T , it follows that

gij = δij + uiuj , A =
√

1 + |∇u|2, gij = δij − uiuj

A2
,

∆Σ =
1

A
∇ ·
(
A

(
I − ∇u⊗∇u

A2

)
∇
)
,

hij =
uij
A
, 2H = ∇ ·

(
∇u
A

)
, K =

det (Hessu)

A4
.

Proof: The proof is a straightforward calculation and can be found e.g. in [6]. �

Using the above expressions and a trick employed in [4], it is possible (with mod-
erate effort) to express the p-Willmore Euler-Lagrange equation

p

2
∆ΣH

p−1 + p(2H2 −K + 2k0)Hp−1u− 2Hp+1u = 0

in divergence form. Indeed, the authors of [4] noticed that the Laplace operator on
Σ can be expressed as

∆Σf = ∇ ·
(

1

A

(
I − ∇u⊗∇u

A2

)
∇
(
Af
))
− f∇ ·

(
1

A

(
I − ∇u⊗∇u

A2

)
∇A

)



6 Eugenio Aulisa, Anthony Gruber, Magdalena Toda and Hung Tran

which simplifies the first variation considerably in the Willmore case. When ap-
plied to the expression in Proposition 3, analysis similar to that of [4] eventually
yields the divergence form equation

∇ ·
(
p

2A

(
I − ∇u⊗∇u

A2

)
∇W +

WH

A2
∇u
)

= 0

where W = AHp−2 is the p-weighted mean curvature of Σ (c.f. [1]). This gives
a necessary condition that must be satisfied on the interior of any graphical p-
Willmore surface, and which can be used to define the p-Willmore flow. Moreover,
the expression of this condition in divergence form has the worthwhile advantage
of being relatively simple to implement on a computer. To that end, it is useful to
reformulate the p-Willmore flow problem in the following weak form.

Proposition 9. Let Σ(t) be a family of surfaces evolving by p-Willmore flow with
parametrization r(x, t) = (x, u(x, t))T for x ∈ Ω, and let v ⊗w = vwT denote
the usual outer product on vector fields. Then, the following system of equations is
satisfied for all t ∈ (0, τ ] and for all ϕ,ψ, ξ ∈ H1(Σ(t))

0 =

∫
Ω

u̇

A
ϕ−

(
p

2A

(
I − ∇u⊗∇u

A2

)
∇W +

WH

A2
∇u
)
· ∇ϕ,

0 =

∫
Ω

2Hψ +

(
∇u
A

)
· ∇ψ,

0 =

∫
Ω
Wξ −AHp−1ξ.

Proof: This system follows from integration-by-parts and the discussion above.
Details can be found in [6, Chapter 5]. �

Turning this statement around, if functions u,H,W are found that satisfy the sys-
tem in Proposition 9 for all t in some interval (0, τ ], then u will be the profile func-
tion of a graph undergoing p-Willmore flow. Using the finite element multiphysics
solver FEMuS [2], it is straightforward to implement the graphical p-Willmore flow
in this way, and observe its numerical behavior. In particular, Figure 1 displays the
4-Willmore flow applied to a surface with fixed undulary boundary. Notice that
when H = 0 is imposed on the boundary, apparent convergence to a minimal
surface is observed.
Moreover, the system in Proposition 9 can be used to confirm the statement of
Theorem 5. In particular, by removing dependence on the parameter t, steady-
state simulations can be performed which are consistent with the statement of that
theorem. Two examples are given in Figure 2, where the 4-Willmore energy is
considered. Here it is confirmed that, as expected, graphical minimizers of this



New Developments on the P-Willmore Energy of Surfaces 7

Figure 1. 4-Willmore evolution of a graph with undulary boundary and
H ≡ 0 boundary data. Observe that the flow appears to converge to a
minimal surface.

energy which satisfy H = 0 on a given boundary profile must in fact be minimal
surfaces.

Figure 2. Solutions of the graphical 4-Willmore BVP with given
boundary profile and H ≡ 0 boundary data. Initial data (left) and
solutions (right). Note that the solutions are in fact minimal graphs.

Though convergence of the system in Proposition 9 has not yet been rigorously in-
vestigated, it has been shown that the graphical p-Willmore flow (with appropriate
boundary conditions) does decrease the p-Willmore energy of a surface along its
evolution. This is guaranteed by the following result from [6].

Theorem 10. The graphical p-Willmore flow is energy-decreasing. That is, let
Σ(t) be a family of surfaces as above with profile function u(x, t) which obeys the
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p-Willmore flow equation

u̇+
p

2
A∇ ·

(
1

A

(
I − ∇u⊗∇u

A2

)
∇W

)
−A∇ ·

(
WH

∇u
A2

)
= 0.

Then, if u = g(x) is a fixed boundary curve and H ≡ 0 on ∂Σ, the p-Willmore
energy satisfies ∫

Σ(t)

(
−u̇
A

)2

+
d

dt

∫
Σ(t)

Hp = 0.

Proof: See [6, Chapter 5]. �

On the other hand, the p-Willmore flow is not always so well-behaved. In partic-
ular, it is not difficult to see that the p-Willmore energy is generally unbounded
from below when p is odd, and this unboundedness is often observed in numer-
ical simulation. As an example, Figure 3 illustrates what can happen when the
p-Willmore flow is started from a surface of negative energy. This situation is eas-
ily constructed, since a surface with pointwise H < 0 can be recovered from a
mean convex surface by simply making an alternate choice of normal vector. In
this case, Theorem 10 ensures that the surface becomes more and more unstable
along the p-Willmore flow, until the simulation eventually breaks. Consequently,
in this case no convergence is observed at all.

Figure 3. 3-Willmore evolution of a graph with undulary boundary,
beginning from a surface of negative 3-Willmore energy. Note that the
flow becomes increasingly unstable and does not converge.

Though some things are known about the p-Willmore energy and its L2-gradient
flow, it is clear that many questions remain. Notably, almost nothing is known
about the convergence or long-time behavior of the p-Willmore flow when p > 2,
even in the somewhat limited case of surfaces expressible as a graph. Moreover,
there are certainly numerous other relevant boundary conditions which can be im-
posed in conjunction with the p-Willmore equation, and future work should in-
vestigate the possibility of non-minimal critical surfaces in these cases as well.
Finally, the notion of p-Willmore energy can be extended to surfaces of variable
dimension and codimension as well as ambient spaces with nonconstant curvature,
which may yield further interesting behavior that is unseen in the low-dimensional
space forms considered so far.
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