
Quasiconformal Mappings with Surface Domains

ANTHONY GRUBER, Department of Scientific Computing, Florida State University
EUGENIO AULISA, Department of Mathematics and Statistics, Texas Tech University

Quasiconformal mappings from surfaces immersed in Euclidean space are

discussed for the purposes of computing dilatation-optimal surface meshes

with prescribed connectivity and Dirichlet boundary data. In particular, a

quaternionic formulation of quasiconformality is proposed which leads to

a linear algorithm for computing least-squares quasiconformal maps from

surfaces given as extrinsic mesh data. This facilitates an iterative procedure

which computes optimal quasiconformal mappings with optional constraints

on surface area and extrinsic geometry. Based on the establishedQuasiconfor-

mal Iteration method, the proposed algorithm produces high quality surface

mappings which correctly capture boundary information while eliminating

undesirable folds which appear during least-squares conformal mapping

procedures.
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1 INTRODUCTION
Conformal maps between two-dimensional Riemann surfaces are

widely recognized as useful tools in both theoretical and compu-

tational settings, as enough interesting quantities are conformally

invariant (e.g. the total Gaussian curvature and theWillmore energy

of surfaces) that many difficult problems can be made consider-

ably simpler by applying an appropriate conformal transformation.

Indeed, at the present time there are several effective algorithms

for computing conformal or nearly conformal mappings (see e.g.

[Bobenko et al. 2015; Gu et al. 2004; Gu and Yau 2003; Kharevych

et al. 2006; Sawhney and Crane 2017; Springborn et al. 2008; Tre-

fethen 2020] and references therein), the use cases of which cover

everything from surface flattening to medical image registration. De-

spite this, it is also well known that conformal maps are unsuitable

for mapping problems with a pointwise boundary correspondence,

and there is very often no conformal map between two connected

surfaces which maps boundaries to boundaries in a prescribed way

even in quite simple cases. For example, it can be shown that there
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Fig. 1. Quasiconformal remeshings (c.f. Section 6.2) of a statue mesh with
genus four constructed using the QC Iteration algorithm from Section 5
with reference conformal structure constructed using Algorithm 5. Left:
original surface; Middle: remeshing with normal constraint (c.f. Section 4.1).
Right: remeshing with area constraint (c.f. Section 4.2). Bottom: histogram
of the norm of the Beltrami coefficient 𝜇.

is no corner-preserving conformal mapping from a square onto

a rectangle; no matter the ratio of lengths, there is an inevitable

amount of shearing distortion that occurs during this process which

is inherently non-conformal. This presents a significant challenge

for computational applications which involve some form of mesh

deformation, where a conformal (or close-to-conformal) mapping

is desired which satisfies some given boundary data. While least-

squares conformal mapping techniques can certainly be applied in

this instance, they are known to produce undesirable folds if the

target surface is non-convex (see e.g. Figure 2 or Figure 5).

On the other hand, in many cases it is sufficient to relax the condi-

tion of conformality to include the possibility of uniformly bounded

shearing distortion. These mappings are known as quasiconformal,

and they are relatively abundant by comparison with their confor-

mal analogues. In fact, a mild growth condition on the distortion at

the boundary guarantees the existence and uniqueness of a “best

possible” quasiconformal map between two Riemann surfaces (c.f.

Theorem 2.2) in a given homotopy class. Known as a Teichmüller

mapping, this extremal object minimizes the maximal conformality

distortion in this class, producing an exceptionally regular object

useful for a multitude of tasks in areas such as image processing,

object deformation, and surface registration.
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1.1 Related Work
Due to their advantageous properties, quasiconformal (QC) map-

pings have recently been investigated for a variety of computational

applications. This usually involves manipulating some form of the

Beltrami equation f𝑧 = 𝜇 f𝑧 (see Section 2), which characterizes qua-

siconformality and can be discretized and solved on constructions

such as a manifold mesh or point cloud. In particular, planar qua-

siconformal mappings are used in [Zeng and Gu 2011] for surface

registration by pre-composing the computation of the Beltrami coef-

ficient (BC) 𝜇 with a Ricci flow procedure to homogenize the domain.

Similarly, [Zeng et al. 2012] employ a discrete version of the Yamabe

flow to compute planar Teichmüller mappings by evolving a given

quasiconformal metric to a Teichmüller minimum, and [Ng et al.

2014] employ a perturbative “Beltrami holomorphic flow” to the

same effect. In a different direction, [Lipman 2012] formulates con-

vex spaces of bounded distortion mappings which are computable

and contain quasiconformal mappings as a subclass, while [Nian and

Chen 2016] uses B-spline techniques to compute quasiconformal

mappings for isogeometric analysis. The authors of [Weber et al.

2012] make use of holomorphic quadratic differentials to formulate

a minimization-based method for computing extremal Teichmüller

maps between planar domains with boundary, or genus 0 surfaces

with additional conformal mapping. Yet another approach is taken

in [Lui et al. 2014] where an alternating minimization called the

“QC Iteration” is developed for computing Teichmüller mappings of

planar domains and genus 0 surfaces. This QC iteration is connected

to the theory of harmonic mappings in [Lui et al. 2015] and shown

to converge under some assumptions. More recently, works such

as [Choi 2021] have also attempted to connect quasiconformality

back to conformality by used quasiconformal mappings as a way to

obtain nearly-conformal parameterizations of planar domains.

Besides those methods discussed so far involving planar mani-

fold meshes, the available techniques for computing quasiconformal

maps have since been expanded to include other topological types

as well as other forms of data. The work [Meng et al. 2016] devel-

ops an algorithm called TEMPO for computing Teichmüller map-

pings on point clouds. Moreover, quasiconformal maps of multiply-

connected planar domains with prescribed distortion are computed

in [Ho and Lui 2016], and [Lee et al. 2016] compute quasiconformal

maps between 3D volumes for the purpose of surface registration.

The variety of algorithms available for computing quasiconformal

maps has also led to a number of interesting applications, such as

a quasiconformal kernel for nearest neighbor calculations in ma-

chine learning algorithms [Peng et al. 2004] as well as a method

for feature-preserving image resizing [Xu et al. 2018]. In addition,

quasiconformal mappings have also been used to create origami-like

surfaces with prescribed folds [Qiu et al. 2019], to compute quasicon-

formal rectilinear mappings for planar subdivision surfaces [Yang

and Zeng 2020], and even to study the morphometry of human teeth

[Choi et al. 2020].

1.2 Contributions
Despite the far-reaching interest into quasiconformal mappings and

their applications, at present there are no methods which are ade-

quate for computing quasiconformal mappings between surfaces

Fig. 2. Comparison between least-squares conformal mapping (LSCM, mid-
dle) and Teichmüller quasiconformal mapping (TQCM, right) on a planar
domain with boundary. Note that the least-squares conformal mapping does
not respect injectivity, despite producing less average texture distortion.

of nonzero genus. While several of the methods mentioned in Sec-

tion 1.1 can conceivably be applied piece-wise after e.g. cutting

each surface along the generators of its fundamental group, it is

a nontrivial matter in practice to compose such a procedure with

the quasiconformal mapping algorithms above. Even more surpris-

ingly, there appear to be no algorithms yet in place for computing

quasiconformal mappings directly from a non-planar surface of any

genus. Instead, non-planar domains must first be mapped confor-

mally to the plane, which is often nontrivial and requires additional

computational resources.

The present work addresses these issues in the case that the

source surface is embedded (or more generally, immersed) in R3
by

providing a direct algorithm for computing quasiconformal map-

pings with prescribed Dirichlet boundary conditions, which can be

applied to surfaces of arbitrary genus. Using a discretization based

on finite elements, this procedure is essentially a single linear solve

which computes a least-squares quasiconformal mapping with re-

spect to some predefined BC 𝜇 given as a value-per-polygon. It is

shown that the present algorithm for computing quasiconformal

maps enables an extension of the useful Quasiconformal Iteration

algorithm of Lui et al. [Lui et al. 2014] mentioned previously, which

computes the extremal Teichmüller map 𝑓 : 𝑀 → 𝑃 between two

connected planar domains, or (with additional conformal mapping)

between two connected, genus zero Riemann surfaces with bound-

ary. The technology introduced here extends the applicability of

the QC Iteration to maps from surfaces of arbitrary genus which

are represented as (planar or non-planar) manifold meshes in R3
,

giving a useful procedure for folding-free object deformation and

surface remeshing. Specifically, the present contributions are:

• An intrinsic-to-extrinsic formulation of quasiconformal map-

pings 𝑓 : 𝑀 → 𝑓 (𝑀) ⊂ R3
based on quaternionic theory

which is convenient for computation.

• A self-contained, genus-agnostic algorithm for computing

quasiconformal mappings whose domain is a manifold mesh

in R3
.

• An extension of the QC Iteration algorithm for computing

Teichmüller mappings to this setting, which approximates
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optimal Teichmüller mappings from immersed surfaces which

are simply connected and dilatation-uniform quasiconformal

mappings otherwise.

• Applications to surface remeshing and the construction of

locally injective mappings satisfying prescribed Dirichlet

boundary conditions.

The remainder of this work is structured as follows. The basics of

quasiconformal maps and the QC Iteration are presented in Section 2.

Section 3 gives the novel quaternionic formulation of quasiconfor-

mality which enables the main algorithm in Section 4. Section 5 then

extends the QC Iteration to the present setting, and some numerical

applications of this are discussed in Section 6.

2 PRELIMINARIES
This Section recalls the standard presentation of extremal quasicon-

formal mappings which is necessary to describe the QC Iteration

algorithm of [Lui et al. 2015, 2014]. More information regarding the

theory of quasiconformal mappings can be found in [Gardiner and

Lakic 2000; Hubbard 2006; Strebel 1984], and a good account of the

connection between Teichmüller and harmonic mappings is given

in [Daskalopoulos and Wentworth 2007].

2.1 Extremal Quasiconformal Mappings
Recall that a quasiconformal map 𝑓 : 𝑀 → 𝑃 between Riemann

surfaces is an orientation-preserving homeomorphism which has

bounded conformality distortion with respect to a given (almost)

complex structure 𝐽 on 𝑇𝑀 . In standard notation (c.f. [Hubbard

2006, Section 4.8], 𝑓 is 𝜇-quasiconformal provided it satisfies the

Beltrami equation,
𝜕𝑓 = 𝜕𝑓 ◦ 𝜇,

where 𝜕, 𝜕 are the C-linear resp. C-antilinear parts of the natural
derivative operator 𝑑 𝑓 : 𝑇𝑀 → 𝑇𝑃 and 𝜇 : 𝑇𝑀 → 𝑇𝑀 , |𝜇 |∞ < 1, is

the C-antilinear Beltrami coefficient (also called Beltrami differential

and abbreviated BC) of the mapping. In a local conformal coordinate

𝑧 : 𝑈 ⊂ 𝑀 → C, this implies the expression

f𝑧 = 𝜇 f𝑧 ,

where f𝑧 B 𝜕𝑧 𝑓 (resp. f𝑧 B 𝜕𝑧 𝑓 ) are the partial derivatives of

the mapping 𝑓 with respect to the conformal coordinate 𝑧 and

𝜇 : 𝑈 → C is the locally defined BC. Notice that 𝑓 is conformal if

and only if 𝜇 ≡ 0, and this condition depends only on the conformal

structure of𝑀 .

Fig. 3. The geometry of a quasiconformal mapping 𝑓 : 𝑀 → R3.

Fig. 4. Two non-homotopic families of maps from an interval to the cylinder
(i.e. curves) with identical boundary data.

Geometrically, the Beltrami equation implies that quasiconformal

maps take small circles on the source space to small ellipses of

bounded eccentricity on the target (see Figure 3). To see this, suppose

𝑓 : 𝑀 → 𝑓 (𝑀) ⊂ R3
immerses the surface 𝑀 in Euclidean space.

Let 𝑔 be a Riemannian metric on𝑀 with local expression 𝑔 = 𝜎 |𝑑𝑧 |2
for some positive function 𝜎 : 𝑈 → R, and denote the Euclidean

metric on R3
by 𝛿 . Then, the Jacobian determinant describing the

local area distortion of 𝑓 has the expression

Jac(𝑓 ) = |f𝑧 |2 − |f𝑧 |2 = |f𝑧 |2
(
1 − |𝜇 |2

)
=

√︁
𝜆1𝜆2,

where 𝜆1, 𝜆2 are the eigenvalues of the pullback metric 𝑓 ∗𝛿 on 𝑀
relative to the flat metric |𝑑𝑧 |2. Moreover, since

𝑓 ∗𝛿 = ⟨𝑑 𝑓 , 𝑑 𝑓 ⟩ = |f𝑧 |2 |𝑑𝑧 + 𝜇 𝑑𝑧 |2 ,
these eigenvalues are given by

𝜆1 = |f𝑧 |2 (1 + |𝜇 |)2 , 𝜆2 = |f𝑧 |2 (1 − |𝜇 |)2 .
These are the squared lengths of the major resp. minor axes of

the ellipse in 𝑇𝑧𝑀 which pushes forward under 𝑑 𝑓 to the unit cir-

cle in 𝑇𝑓 (𝑧) 𝑓 (𝑀), quantifying the shearing distortion induced by

quasiconformality. Their ratio defines the maximal dilatation of 𝑓 ,

𝐾 (𝑓 ) =
1 + |𝜇 |∞
1 − |𝜇 |∞

,

which is 1 ≤ 𝐾 < ∞ for orientation-preservingmaps and−∞ < 𝐾 <

−1 for orientation-reversingmaps. Note that Jac(𝑓 ) > 0when f𝑧 ≠ 0
and |𝜇 | < 1, reflecting the remarkable fact that quasiconformal

mappings are locally injective. In the discrete setting, this implies

that 𝑓 cannot have fold-overs or wrap-ups (i.e. places where the

mapping fails to be immersive, see Figures 2, 5, and 13), which is

essential in applications such as medical device simulations where

surfaces must remain embedded as they deform.

Although there are generally many quasiconformal mappings

from one Riemann surface to another, there are relatively few which

are distinguished as being extremal. These are themappings 𝑓 which

minimize the maximal dilatation 𝐾 , i.e.

𝐾 (𝑓 ) ≤ 𝐾 (𝑓 ′),
for any map 𝑓 ′ : 𝑀 → 𝑃 homotopic to 𝑓 (denoted 𝑓 ′ ∼ 𝑓 ) relative
to the boundary 𝜕𝑀 (see Figure4 for an illustration). Such maps

always exist for each homotopy class,

[𝑓 ] = {𝑓 ′ : 𝑀 → 𝑃 : 𝑓 ′ |𝜕𝑀 = 𝑓 |𝜕𝑀 and 𝑓 ′ ∼ 𝑓 }
but need not be unique. On the other hand, in many circumstances

there is a unique extremal map of special form which is compatible

with the given boundary data. This is called a Teichmüller map,
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and has the desirable property of uniform conformality distortion

throughout the whole domain.

Definition 2.1. The quasiconformal mapping 𝑓 : 𝑀 → 𝑓 (𝑀)
between Riemann surfaces is said to be Teichmüller provided there

exists a constant 0 < 𝑘 < 1 and holomorphic quadratic differential

𝑞 ⊂ 𝑇 ∗𝑀 ⊗𝑇 ∗𝑀 such that in any local conformal coordinate 𝑧 : 𝑈 ⊂
𝑀 → C the Beltrami coefficient 𝜇 : 𝑇𝑀 → 𝑇𝑀 , 𝜇 = 𝜇 (𝑧)𝑑𝑧 ⊗ 𝜕

𝜕𝑧
satisfies

𝜇 (𝑧) = 𝑘 𝑞(𝑧)|𝑞(𝑧) | , 𝑘 = ∥𝑞∥1 =

∫
𝑀

|𝑞 | ,

where𝑞 = 𝑞(𝑧)𝑑𝑧2
. In this case, 𝜇 is said to be Teichmüller associated

to 𝑓 .

It is a fact that when a Teichmüller map exists, it is unique and

extremal for its homotopy class. Moreover, existence is guaranteed

in many practically-relevant situations thanks to classical results in

complex analysis. In particular, define the boundary dilatation of

the homotopy class [𝑓 ] as

𝐻 ( [𝑓 ]) = inf

𝑓 ′∈[𝑓 ]

{
inf

𝐶⊂𝑀
𝐾

(
𝑓 ′ |𝑀\𝐶

)}
,

where 𝐶 is any compact set strictly contained in 𝑀 . The primary

existence result for Teichmüller maps in terms of this criterion is

due to Strebel [Strebel 1984].

Theorem 2.2. [Gardiner 1987, Theorem 9, Section 6.8] Let 𝑀 be
a connected Riemann surface with potential boundary, and let 𝑓 :

𝑀 → 𝑓 (𝑀) be quasiconformal. Suppose the boundary dilatation
𝐻 ( [𝑓 ]) < 𝐾 (𝑓 ). Then, [𝑓 ] contains a unique extremal Teichmüller
mapping with Beltrami coefficient 𝜇 = 𝑘𝑞/|𝑞 | for a unique constant
0 < 𝑘 < 1 and a quadratic differential 𝑞 ⊂ 𝑇 ∗𝑀 ⊗ 𝑇 ∗𝑀 which is
integrable, holomorphic, and unique up to multiplication by a positive
constant.

Remark 2.3. Note that the Teichmüller mappings from [Strebel

1978, Theorem 8] are allowed to correspond to quadratic differentials

which are meromorphic with at most one simple pole, as opposed to

purely holomorphic. This definition considerably widens the space

of Teichmüller maps, at the cost of uniqueness in certain settings.

Practically, QC Iteration may produce mappings with this same

structure, see e.g. the simple pole on the front of the surface in

Figure 9, which is also visible in the lower-right image of Figure 5.

2.2 Quasiconformal remeshing
From Theorem 2.2 and the above discussion, it is clear that Teich-

müller maps are remarkably well-behaved. In particular, any qua-

siconformal map 𝑓 : 𝑀 → 𝑃 between Riemann surfaces satisfying

“nice enough" boundary conditions contains a unique Teichmüller

extremal map in its homotopy class. Conversely, it turns out that

even when no extremal Teichmüller map exists, there is always a

Teichmüller map with dilatation arbitrarily close to the extremal

one (see [Strebel 1978, Theorem 8]). In some sense, this makes

Teichmüller maps the best possible quasiconformal mappings be-

tween Riemann surfaces𝑀 and 𝑃 , and this property has encouraged

their use in computational applications such as folding-free object

deformation (as in Figures 2, 5) and computational remeshing (as

in Figure 1). While these applications are discussed at length in

Fig. 5. Comparison of LSCM (mid) and TQCM (right) on a cylinder with
prescribed boundary; top row colored by |𝜇 | and bottom row colored by the
first component 𝜇1. Similar to the planar case, LSCM creates undesirable
spillage and cannot guarantee injectivity. Conversely, TQCM remains in-
jective despite a height distortion of 80% at the boundary. Note the visible
discontinuities in 𝜇1 as expected (c.f. Figure 9).

Section 6, it is worth mentioning explicitly how quasiconformal

mappings are useful for surface remeshing in order to understand

some of the Figures which appear in the meantime. To that end, con-

sider an immersed surface𝑀 ⊂ R𝑛 (𝑛 = 2, 3) presented in discrete

form as a list of vertex positions in R𝑛 along with an associated

polygon mesh defining its connectivity. Then, the discrete surface

(also called𝑀) inherits a Riemannian metric 𝑔 which comes from

restricting the Euclidean inner product to each polygon, which in

turn defines a discrete conformal structure on𝑀 determined by the

interior angles of these polygons. Now, it is often the case in practice

that many of these angles are nearly degenerate (see e.g. Figure 1,

left column), leading to a substantial amount of discretization error

which appears “downstream” when e.g. differential equations are

solved on𝑀 . To alleviate this, it is standard to look for a different

discretization of𝑀 with a more regular discrete conformal structure,

so that a “better” triangulation of the surface can be obtained from a

preprocessing step. Notably, one way to accomplish this is with an

appropriate quasiconformal mapping 𝑓 : (𝑀,𝑔
ref
) → (𝑀,𝑔) where

𝑔
ref

is a pre-supplied reference metric belonging to the desired con-

formal class [𝑔
ref
]; in this way, the original discrete surface 𝑀 is

suitably remeshed through a direct application of the mapping 𝑓 .

Moreover, with this approach it is enough to specify [𝑔
ref
] through

a simple list of target interior angles (c.f. Section 6.2), since the no-

tion of quasiconformality does not depend on any particular metric

representative. This is precisely what enables the remeshing appli-

cations seen in this work, which are facilitated by the quaternionic

formulation in Section 3 as well as the QC Iteration algorithm of

[Lui et al. 2015, 2014].

2.3 TheQuasiconformal (QC) Iteration
The Quasiconformal (QC) Iteration algorithm introduced in [Lui

et al. 2014] is an approach to computing extremal Teichmüller map-

pings between planar domains and between surfaces which are

conformal to planar domains. Its general idea is to find a downward
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trajectory toward the optimal Teichmüller map in a given homo-

topy class by alternately minimizing the distortion induced by a

particular BC 𝜇 and the deviation of 𝜇 from Teichmüller form as de-

fined in Definition 2.1. Under the somewhat restrictive assumptions

mentioned in [Lui et al. 2015] (such as nonpositive Gaussian cur-

vature of the target), this algorithm is guaranteed to converge to a

unique Teichmüller mapping between simply or multiply connected

Riemann surfaces of the same topology. In fact, the QC Iteration

typically exhibits good practical performance even in cases when a

unique Teichmüller extremum cannot be guaranteed, converging to

a mapping with near-constant dilatation in many cases of interest re-

gardless of these assumptions. The goal of this Subsection is to recall

some details of the QC Iteration algorithm which will be necessary

for its extension to general immersed surfaces in Section 5.

Let (𝑀, 𝐽 ) be a Riemann surface as before and choose a Riemann-

ian metric 𝑔 compatible with 𝐽 . Essentially, the QC Iteration is a

recipe to minimize the quasiconformal distortion of 𝑓 : (𝑀,𝑔) →
(𝑃, ℎ) with respect to an evolving BC 𝜇,

QC𝜇 (𝑓 ) =
∫
𝑀

��𝜕𝑓 − 𝜕𝑓 ◦ 𝜇��2
ℎ
𝑑𝑆𝑔,

where 𝑃 is a target Riemann surface of the same topology equipped

with Riemannian metric ℎ, |·|ℎ denotes the norm with respect to ℎ,

and 𝑑𝑆𝑔 denotes the area element of (𝑀,𝑔). Clearly, 𝑓 : 𝑀 → 𝑃 is

quasiconformal with respect to 𝜇 if and only if QC𝜇 (𝑓 ) = 0, and

it is shown in Appendix A that the quasiconformal distortion of a

map 𝑓 ′ ∈ [𝑓 ] with respect to a given 𝜇 can be interpreted as the

“conformal part” of the Dirichlet energy D𝑔 (𝜇) (𝑓 ′) where 𝑔(𝜇) is
a canonical representative of the conformal class of metrics on𝑀

defined by 𝜇, i.e. QC𝜇 measures precisely the amount by which the

mapping 𝑓 ′ : (𝑀,𝑔(𝜇)) → (𝑃,ℎ) fails to be conformal with respect

to [𝑔(𝜇)]. In fact, it can be shown that in many cases of interest there

is a unique minimizer of D𝑔 (𝜇) for each 𝜇, and therefore the unique
Teichmüller mapping 𝑓 ∗ : (𝑀,𝑔) → (𝑃, ℎ) in the homotopy class

[𝑓 ] can be approached by way of these minimizers. This gives an

interpretation of the QC Iteration from [Lui et al. 2015] in terms of

harmonic mappings which is useful for analysis and briefly explored

in Appendix B.

More practically, the QC Iteration algorithm is an iterative three-

stage process for jointly minimizing QC𝜇 with respect to 𝑓 and 𝜇

formulated in [Lui et al. 2014] and loosely described by the following:

(1) Fix 𝜇 and minimize QC𝜇 (𝑓 ) for 𝑓 : (𝑀,𝑔) → (𝑃, ℎ) .
(2) Compute 𝜇 algebraically from 𝑓 .

(3) Locally post-process 𝜇 to bring it closer to Teichmüller form.

Steps 1 and 2 of this procedure are relatively straightforward to

describe for planar domains𝑀 ⊂ C that can be covered by a single

local coordinate chart 𝑈 ⊃ 𝑀 where 𝑔 = 𝜎 |𝑑𝑧 |2 for some positive

𝜎 : 𝑈 → R. In this case, 𝜇 : 𝑈 → C can be interpreted as a complex-

valed function and the distortion QC𝜇 takes the simple expression,

2QC𝜇 (𝑓 ) =
∫
𝑈

1

𝜎
|f𝑧 − 𝜇 f𝑧 |2ℎ 𝜎 𝑖𝑑𝑧 ∧ 𝑑𝑧

=

∫
𝑈

|f𝑧 − 𝜇 f𝑧 |2ℎ 𝑖𝑑𝑧 ∧ 𝑑𝑧,

which can be linearized around a reference mapping, set equal to

zero, and solved directly to yield 𝑓 in a least-squares sense. Moreover,

the use of complex algebra to describe 𝑓 and 𝜇 means that the new 𝜇

associated to the most recently computed 𝑓 can be readily recovered

as

𝜇 =
f𝑧
f𝑧
,

where the vector quotient on the RHS is interpreted as the division

of complex numbers. Since computations like these are no longer

straightforward on general immersed Riemannian surfaces𝑀 ⊂ R3
,

a primary contribution of the present work is an extension of these

ideas to more general surface data (e.g. Figure 6) in Sections 4 and 5

using ideas from quaternion algebra introduced in Section 3.

In contrast to this, Step 3 of the QC Iteration is subtle regard-

less of the involved geometry and represents an indirect way to

move 𝜇 toward the global Teichmüller optimum by manipulating

its local structure. This is facilitated by the following fact proved

for convenience in Appendix C.

Lemma 2.4. Any Teichmüller Beltrami coefficient 𝜇 : 𝑇𝑀 → 𝑇𝑀

has harmonic norm, as well as harmonic argument when restricted
to local charts 𝑈 ⊂ 𝑀 where 𝑞 ≠ 0. Conversely, any pair (𝑘, 𝜃 )
where 𝑘 ∈ R and 𝜃 : 𝑈 → R is harmonic can be associated with a
Teichmüller Beltrami coefficient 𝜇 on𝑈 .

By this result, the BC 𝜇∗ associated to the unique Teichmüller

mapping 𝑓 ∗ ∈ [𝑓 ] should have constant norm and harmonic argu-

ment when restricted to any local coordinate system away from

the zeros of the quadratic differential 𝑞. Therefore, Step 3 in the QC

Iteration is to gently perturb the 𝜇 computed in Step 2 so as to bring

its norm to constant while roughly smoothing its argument. This

involves a straightforward projection of the norm onto its average

value

|𝜇 | ←
∫
𝑀
|𝜇 | 𝑑𝑆𝑔∫
𝑀
𝑑𝑆𝑔

,

followed by a single step of Jacobi iteration applied to arg 𝜇. This

usually (although not always) results in an iterate 𝜇 with lower

“Beltrami energy” (see Appendix B for details) which is used as the

input to the next iteration. Note that the smoothing Step 3 will cease

to perturb the optimal 𝜇∗ away from the zeros of 𝑞 by design, since

Lemma 2.4 guarantees that the norm is constant and the argument

is harmonic.

Remark 2.5. Since the argument of the BC 𝜇 is only well defined

away from the zeros of the quadratic differential 𝑞, so is the smooth-

ing procedure proposed in [Lui et al. 2014]. For this reason, the

extended algorithm presented in Section 5 smooths on the phase

𝑒𝑖 arg 𝜇 = 𝜇/|𝜇 | which is well defined everywhere on 𝑀 but not

continuous, as can be seen in e.g. Figure 5 (bottom right). Since

Δ𝑒𝑖 arg 𝜇 = 𝑒𝑖 arg 𝜇
(
𝑖Δarg 𝜇 − |∇arg 𝜇 |2

)
, these procedures are equiv-

alent when𝑀 is simply connected.

While quasiconformal mappings remain important tools for com-

putational tasks such as meshing and surface registration, their

present utility is limited by the use of planar technology such as

what has just been described. Computing quasiconformal mappings

between generic Riemann surfaces in this way requires sophisticated

pre- and post-processing with conformal flattening procedures, as

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: June 2022.



111:6 • Anthony Gruber and Eugenio Aulisa

Fig. 6. Quasiconformal mapping from a simply connected surface equipped
with an ideal conformal structure (c.f. Section 6.2) to itself equipped with
the usual conformal structure inherited from its embedding in R3.

well as attention to highly nontrivial issues of compatibility be-

tween solutions computed on different surface patches. To develop

a coordinate-free alternative to this in the case that the source sur-

face 𝑀 ⊂ R3
is given extrinsically, The next Section discusses a

formulation of quasiconformality using quaternionic surface theory

which enables the direct computation of quasiconformal maps from

immersed Riemann surfaces of any genus.

3 QUASICONFORMALITY WITH QUATERNIONS
The present approach to computing quasiconformal mappings is

facilitated by technology from quaternionic surface theory, the de-

tails of which are discussed in [Burstall et al. 2004; Kamberov et al.

2002]. Recall that the quaternions H are the 4-dimensional division

algebra over R generated by the set of symbols {𝑖, 𝑗, 𝑘} satisfying
the relations 𝑖2 = 𝑗2 = 𝑘2 = 𝑖 𝑗𝑘 = −1. It turns out that the additional

algebraic structure provided by H is advantageous for studying the

conformal geometry of immersed surfaces in a variety of settings.

In particular, any immersion 𝑓 : 𝑀 → R3
of the two-dimensional

surface 𝑀 can be regarded as taking values in the imaginary part

of the quaternions ImH � R3
, and therefore multiplication in H

(conventionally acting on the right) can be applied. This leads to a

coordinate-free theory of surfaces which is adaptable, concise, and

well suited for computational applications.

To explain the basic idea behind this, let (𝑀, 𝐽 ) be a connected
Riemann surface with (possibly empty) boundary 𝜕𝑀 and complex

structure 𝐽 : 𝑇𝑀 → 𝑇𝑀 satisfying 𝐽 2 = −1𝑇𝑀 . Then, 𝑀 carries

a natural conformal structure inherited from the scalar product

on each tangent space, and an immersion 𝑓 : (𝑀, 𝐽 ) → R3
is

conformal provided it maps oriented orthogonal bases of 𝑇𝑀 to

oriented orthogonal bases of 𝑑 𝑓 (𝑇𝑀). By standard arguments (e.g.

[Burstall et al. 2004, Lemma 2]), this implies the existence of a

unit quaternion field 𝑁 : 𝑀 → 𝑆2 ⊂ ImH uniquely compatible

with the orientation on 𝑀 that stabilizes 𝑑 𝑓 (𝑇𝑀), i.e. such that

𝑑 𝑓 (𝑇𝑀) = {v ∈ ImH | 𝑁v𝑁 = v}. It follows that 𝑁 is the Gauss

map of the immersion 𝑓 , and moreover that 𝑓 is conformal when

and only when there exists an 𝑁 : 𝑀 → 𝑆2
satisfying

∗𝑑 𝑓 = 𝑁 𝑑𝑓 ,

Fig. 7. An illustration of a conformal mapping 𝑓 : 𝑀 → ImH � R3 localized
to a patch 𝑈 ⊂ 𝑀 . Here f1 B 𝑑𝑓 (𝝏1) and ∗𝑑𝑓 (𝝏1) = 𝑑𝑓 ◦ 𝐽 (𝝏1) =

𝑁 𝑑𝑓 (𝝏1) = 𝑁 × f1 since 𝑁 ⊥ 𝑑𝑓 .

where ∗𝑑 𝑓 := 𝑑 𝑓 ◦ 𝐽 is the negative Hodge star operator on differ-

ential one-forms. This provides a useful link illustrated in Figure 7

between the intrinsic notion of conformality and its extrinsic ex-

pression in terms of the surface Gauss map.

3.1 A useful definition
The key to the results presented here is a description of quasicon-

formal mappings in terms of this quaternionic framework. First,

note that the Gauss map 𝑁 : 𝑀 → 𝑆2
of any conformal immer-

sion 𝑓 : 𝑀 → ImH defines a canonical complex structure on 𝑇𝑀

(c.f. [Burstall et al. 2004, Section 2.1]) which conventionally acts

on the left. Indeed, it is straightforward to check that the mapping

𝐽 : 𝑇𝑀 → 𝑇𝑀 defined by

(𝑎 + 𝐽𝑏) v = 𝑎 𝑑 𝑓 (v) + 𝑏 𝑁 𝑑𝑓 (v),
for all 𝑎, 𝑏 ∈ R and 𝑣 ⊂ 𝑇𝑀 is a complex structure on𝑇𝑀 compatible

with 𝑁 .

Remark 3.1. It will often be useful to “forget” about the reference

immersion in the case of 𝑀 ⊂ R3 � ImH, regarding (𝑀, 𝐽 ) as an
abstract surface even when 𝐽 is defined by a Gauss map 𝑁 of this

immersion. This allows for notational flexibilities such as 𝑓 : 𝑀 →
𝑓 (𝑀) ⊂ R3

which will be freely adopted in the remainder of the

work when the context is clear. Additionally, it is interesting to note

that every conformal structure 𝐽 on𝑇𝑀 can be realized by the Gauss

map of some conformal immersion 𝑓 : 𝑀 → ImH (see [Kamberov

et al. 2002, pg 8]).

Moreover, notice that any complex structure 𝐽 induces a direct

sum decomposition of the space Hom

(
𝑇𝑀,R3

)
of R3

-valued func-

tions on 𝑇𝑀 analogous to that from classical complex analysis. In

particular, given 𝛼 ∈ Hom

(
𝑇𝑀,R3

)
there are conformal resp. anti-

conformal parts of 𝛼 with respect to 𝑓 ,

𝛼+ =
1

2

(𝛼 − 𝑁 ∗ 𝛼) , 𝛼− =
1

2

(𝛼 + 𝑁 ∗ 𝛼) ,

and it is easily checked that ∗𝛼+ = 𝑁 𝛼+ while ∗𝛼− = −𝑁 𝛼−. This
leads to a natural definition of quasiconformality in the quaternionic

setting.

Definition 3.2. Let𝑀 ⊂ R3
be an immersed surface with complex

structure 𝐽 : 𝑇𝑀 → 𝑇𝑀 realized by its Gauss map 𝑁 : 𝑀 →
S2
. Then, a mapping 𝑓 : 𝑀 → ImH is said to be quasiconformal
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provided there exists a measurable, C-antilinear endomorphism

𝜇 : 𝑇𝑀 → 𝑇𝑀 which satisfies |𝜇 |∞ < 1 and

𝑑 𝑓 − = 𝑑 𝑓 + ◦ 𝜇.

Definition 3.2 is the quaternionic analogue of the standard defi-

nition for abstract Riemann surfaces (𝑀, 𝐽 ) given in Section 2. On

the other hand, the algebraic structure of H enables an equivalent

criterion which is more useful for practical computation and makes

explicit use of quaternionic multiplication. First, note that the BC 𝜇

can be interpreted as a function �̃� : 𝑇𝑀 → (𝑇𝑀)⊥ taking values in

the normal bundle to 𝑇𝑀 in H, which is isomorphic to the complex

plane at every point (simply choose 𝑁 as the imaginary unit). To

see this, consider a local domain𝑈 ⊂ 𝑀 with section v ⊂ 𝑇𝑈 and

write 𝜇 : 𝑇𝑈 → 𝑇𝑈 as

𝜇 (v) = 𝜇1 (v)v + 𝜇2 (v) 𝐽v,
for some “coordinate” functions 𝜇𝑖 : 𝑇𝑈 → R. Consequently, it
follows that

𝑑 𝑓 + ◦ 𝜇 (v) = 𝑑 𝑓 +
(
𝜇1 (v)v + 𝜇2 (v) 𝐽v

)
= 𝜇1 (v)𝑑 𝑓 + (v) + 𝜇2 (v) ∗ 𝑑 𝑓 + (v)

=

(
𝜇1 (v) + 𝜇2 (v)𝑁

)
𝑑 𝑓 + (v) = �̃� (v)𝑑 𝑓 + (v),

where �̃� = 𝜇1 + 𝜇2𝑁 is a (𝑇𝑈 )⊥-valued function on 𝑇𝑈 . The re-

versibility of this argument establishes that normal-valued quater-

nionic functions �̃� satisfying |�̃� |∞ < 1 (which transform appropri-

ately as defined by Lemma 3.4) correspond precisely to the BCs of

quasiconformal mappings 𝑓 : 𝑀 → R3
, giving an alternative repre-

sentation of these objects. This leads to the following equivalent to

Definition 3.2 which is illustrated in Figure 8.

Fig. 8. Left: an illustration of 𝜇 as a normal-valued quaternion field. Right:
an illustration of Definition 3.3.

Definition 3.3. Let𝑀 ⊂ R3
be an immersed surface with complex

structure 𝐽 : 𝑇𝑀 → 𝑇𝑀 defined by its Gauss map 𝑁 : 𝑀 →
S2
. Then, a mapping 𝑓 : 𝑀 → ImH is said to be quasiconformal

provided there exists a measurable, normal-valued quaternion field

𝜇 : 𝑇𝑀 → (𝑇𝑀)⊥ which satisfies |𝜇 |∞ < 1 and

𝑑 𝑓 − = 𝜇 𝑑 𝑓 + .

The equality in Definition 3.3 is suggestive of the coordinate-

dependent expression f𝑧 = 𝜇 f𝑧 seen in the planar case, but has the

notable benefit of being expressed without reference to any under-

lying coordinate system. From this definition, it is straightforward

to establish how 𝜇 : 𝑇𝑀 → (𝑇𝑀)⊥ must transform under a change

of basis for 𝑇𝑀 .

Lemma 3.4. Let 𝑎 ∈ C, 𝑎 = 𝑎1+ 𝐽𝑎2 and suppose 𝜇 : 𝑇𝑀 → (𝑇𝑀)⊥
is a Beltrami coefficient satisfying Definition 3.3. Then, for any local
domain𝑈 ⊂ 𝑀 with section v ⊂ 𝑇𝑈 it follows that

𝜇 (𝑎v) = �̄�2

|𝔞 |2
𝜇 (v),

where 𝔞 ∈ H, 𝔞 = 𝑎1 + 𝑁𝑎2 is the quaternionic analogue of 𝑎.

Proof. Due to the conformality (resp. anticonformality) of 𝑑 𝑓 +

(resp. 𝑑 𝑓 −), it follows that

𝔞 𝜇 (𝑎v)𝑑 𝑓 + (v) = (𝜇 𝑑 𝑓 +)(𝑎v) = 𝑑 𝑓 − (𝑎v)
= �̄� 𝑑 𝑓 − (v) = �̄� (𝜇 𝑑 𝑓 +)(v) = �̄� 𝜇 (v)𝑑 𝑓 + (v) .

Therefore, 𝜇 (v) = (𝔞/�̄�) 𝜇 (𝑎v) and the conclusion follows. □

In the literature on quasiconformal maps, a bounded measurable

function 𝜇 that transforms in this way is said to be a “(-1,1)-form”

on 𝑇𝑀 (c.f. [Hubbard 2006, Section 4.8]). In particular, given a local

conformal coordinate 𝑧 on a domain 𝑈 ⊂ 𝑀 , several authors write

the suggestive expression 𝜇 = 𝜇 𝑑𝑧
𝑑𝑧

for some local function 𝜇 : 𝑈 →
C to illustrate the transformation rule seen in Lemma 3.4. More

tensorially, any C-antilinear 𝜇 : 𝑇𝑀 → 𝑇𝑀 as in Definition 3.2 can

be expressed locally as 𝜇 = 𝜇 𝑑𝑧 ⊗ 𝜕
𝜕𝑧 , so that for any 𝑎 ∈ C,

𝜇 (𝑎v) = 𝜇 𝑑𝑧 (𝑎v) 𝜕
𝜕𝑧

= 𝑎𝜇 𝑑𝑧 (v) 𝜕
𝜕𝑧

= 𝑎 𝜇 (v).

It is remarkable that the same transformation rule is readily estab-

lished in the quaternionic setting without reference to any particular

system of local coordinates.

3.2 Beltrami versus Hopf
Definition 3.3 provides a link between the intrinsic quasiconformal

geometry of𝑀 and its extrinsic immersion in R3
which is useful for

computing quasiconformal mappings between immersed surfaces.

Before considering aminimization-based approach to accomplishing

this in the present setting and its consequences for QC Iteration, it

is worth discussing the BC 𝜇 : 𝑇𝑀 → (𝑇𝑀)⊥ in greater detail to

gain some intuition about this new notion. In particular, let (𝑀, 𝐽 )
be a Riemann surface with complex structure 𝐽 induced by some

Gauss map 𝑁 : 𝑀 → 𝑆2
as before. Then, the differential of any

immersion 𝑓 : 𝑀 → R3
splits as 𝑑 𝑓 = 𝑑 𝑓 + + 𝑑 𝑓 − with respect to 𝐽 ,

so that its induced metric on𝑀 is given by

𝑓 ∗𝛿 = |𝑑 𝑓 |2 = |𝑑 𝑓 + |2 + |𝑑 𝑓 − |2 + 2 Re

(
𝑑 𝑓 +𝑑 𝑓 −

)
,

where it was used that ⟨v,w⟩H = (1/2) (vw̄ +wv̄) = Re(vw̄). The
(2, 0)-part of this quantity is the classical Hopf differential of the
mapping 𝑓 ,

𝑄 = 𝑑 𝑓 +𝑑 𝑓 −,

which quantifies deviation from conformality with respect to 𝐽 .

Expanding the positive and negative parts of this expression yields

the alternative representation

4𝑄 = |𝑑 𝑓 |2 − |∗𝑑 𝑓 |2 − 2 ⟨𝑑 𝑓 , ∗𝑑 𝑓 ⟩ 𝑁,
which shows that the Hopf differential is normal-valued, i.e. locally

expressible on 𝑈 ⊂ 𝑀 as 𝑄 (v) = 𝑎(v) + 𝑏 (v)𝑁 for some smooth

functions 𝑎, 𝑏 : 𝑇𝑈 → R. Moreover, it is clear from this expression

that 𝑓 is conformal or anticonformal if and only if𝑄 ≡ 0. Conversely,
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Fig. 9. Another view of the Teichmüller extremal mapping from Figure 5 but
with 95% height deformation at the boundary. Note the visible structure of
the quadratic differential governing the mapping, in particular the simple
pole in front and simple zero on back which counteract to maintain zero
Poincaré-Hopf index.

when 𝑓 is quasiconformal in the sense of Definition 3.3, simple

algebraic manipulations show that 𝑄 = 𝜇 |𝑑 𝑓 + |2 or alternatively

𝜇 = ∗𝑄,
demonstrating that the Beltrami differential 𝜇 : 𝑇𝑀 → (𝑇𝑀)⊥
characterizing quasiconformality is simply the conjugate of the

Hopf differential up to an application of the Hodge star. Indeed,

the structure of this object is often visible in the mapping (see e.g.

Figure 9), where poles and zeroes necessarily appear according to

the form of 𝑄 .

Remark 3.5. The relationship between 𝜇 and𝑄 discussed here can

also be considered a (rearranged) special case of the isomorphism

𝜏 ↦→ 𝑑 𝑓 + 𝜏 between tangential-valued anticonformal one-forms and

normal-valued quadratic differentials induced by the conformal

immersion 𝑑 𝑓 + : 𝑀 → R3
(see [Kamberov et al. 2002][Section 1.8]

for details).

4 MINIMIZING THE QUASICONFORMAL DISTORTION
It is now possible to discuss the present method for computing qua-

siconformal mappings directly from immersed surfaces, which is

based on the quaternionic Definition 3.3. While the notion of quasi-

conformality in Definition 3.3 could be extended to cover the case of

mappings 𝑓 : 𝑀 → 𝑃 between fixed Riemann surfaces 𝑀, 𝑃 ⊂ R3
,

the present discussion will focus on mappings 𝑓 : 𝑀 → 𝑓 (𝑀) ⊂ R3

whose target is determined by the mapping itself, as this is the case

most relevant for the remeshing and boundary deformation applica-

tions considered in Section 6. Figure 10 gives a qualitative example

of this, where quasiconformal mappings are used to regularly in-

terpolate some given boundary data. In this setting, the Riemann

surface (𝑀, 𝐽 ) ∈ R3
is assumed given with complex structure 𝐽

realized by its Gauss map 𝑁 : 𝑀 → S2. Then, the quasiconformal

distortion of a map 𝑓 : 𝑀 → R3
has the expression,

QC𝜇 (𝑓 ) =
∫
𝑀

|𝑑 𝑓 − − 𝜇 𝑑 𝑓 + |2 𝑑𝑆𝑔,

which by Theorem A.1 in Appendix A is related to the conformal

part of the Dirichlet energy with respect to the metric 𝑔(𝜇) on 𝑀
inherited from the BC 𝜇. Since the metric 𝑔 and normal 𝑁 to𝑀 are

fixed, the conformal/anticonformal parts 𝑑 (·)−, 𝑑 (·)+ and the Hodge

star ∗ are linear operators. Therefore, QC𝜇 is a convex function

of 𝑓 (for fixed 𝜇) whose global minimizer in each homotopy class

is a least-squares quasiconformal mapping approximately satisfy-

ing Definition 3.3. This means quasiconformal mappings can be

computed from compatible BCs 𝜇 : 𝑇𝑀 → (𝑇𝑀)⊥ by solving the

minimization problem

argmin

𝑓 ∈[𝑓0 ]
QC𝜇 (𝑓 ), 𝑓 |𝜕𝑀 = 𝑓0 |𝜕𝑀 ,

where 𝑓0 : 𝑀 → R3
is a suitable “initial” mapping whose boundary

is prescribed and which defines the homotopy class under consider-

ation. Expressing the unknown mapping 𝑓 perturbatively in terms

of a one-parameter family 𝑓 (𝑥, 𝑡) = 𝑓 (𝑥) + 𝑡𝜑 (𝑥) for 𝑡 ∈ (−𝜀, 𝜀) and
some compactly supported variation 𝜑 : 𝑀 → R3

vanishing on the

boundary 𝜕𝑀 , standard techniques from the calculus of variations

yield a necessary and sufficient criterion for 𝑓 to be a minimizer of

QC𝜇 . In particular, using the fact that 𝜇, the conformal structure,

and the metric 𝑔 are fixed, the derivative of the functional QC𝜇 at
𝑓 in the direction 𝜑 is given by

𝛿QC𝜇 (𝑓 )𝜑 B
𝑑

𝑑𝑡

����
𝑡=0

QC𝜇 (𝑓 + 𝑡𝜑)

=

∫
𝑀

⟨𝑑 𝑓 − − 𝜇 𝑑 𝑓 +, 𝑑𝜑− − 𝜇 𝑑𝜑+⟩ 𝑑𝑆𝑔,

where ⟨·, ·⟩ denotes the Euclidean inner product which takes place

following the quaternionic products in its arguments. This can be

written as a linear system of equations for the minimizer 𝑓 once

an appropriate basis of test functions is given, and specific details

will be given in Section 4.3. On the other hand, notice that the

above minimization does not constrain the surface area or extrinsic

geometry of the image surface 𝑓 (𝑀) in R3
, meaning that 𝑓 (𝑀) may

be quite different qualitatively than𝑀 . While this is expected and

not necessarily a problem, it is often desirable (e.g. when remeshing)

to have constraints on the mapping 𝑓 which keep the target surface

close to the original in some sense. Therefore, the remainder of this

Section discusses two constraints which are useful for this purpose,

along with the specific finite element algorithm used at present for

computing least-squares quasiconformal mappings.

4.1 Preserving extrinsic geometry
As mentioned, it is often useful to compute quasiconformal map-

pings which preserve the extrinsic geometry of the source sur-

face𝑀 ⊂ R3
. Particularly when remeshing, a quasiconformal map

𝑓 : (𝑀,𝑔
ref
) → (𝑀,𝑔) is desired which optimizes mesh element

angles while preserving the original Gauss map 𝑁 as well as possi-

ble (note that here the conformal structure [𝑔
ref
] is not inherited

from the original immersion). Certainly, preserving 𝑁 exactly is

not possible unless 𝑓 is a conformal mapping, although reasonably

good agreement can be enforced in any case by using an appropriate

constraint alongside the minimization of QC𝜇 . One effective option
for this was proposed in [Gruber and Aulisa 2020] for the purposes

of preserving extrinsic features while minimizing the conformal
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distortion, a functional which is equivalent to QC𝜇 when 𝜇 ≡ 0

and arises in the context of least-squares conformal mapping. To

describe this idea specifically, consider a point x ∈ 𝑀 , an immersion

𝑓 : 𝑀 → R3
, and a curve expx (𝑡v) for some v ∈ 𝑇x𝑀 and |𝑡 | < 𝜀.

The image of this curve lies on the immersed surface 𝑓 (𝑀), and
letting 𝑁 be normal to the image 𝑓 (𝑀), Taylor expansion around

𝑡 = 0 yields

𝑓
(
expx (𝑡v)

)
= 𝑓 (x) + 𝑡 𝑑 𝑓 (v) + 𝑡

2

2

(∇𝑑 𝑓 ) (v, v) + O
(
𝑡3

)
,

𝑁

(
expx

( 𝑡
2

v
))

= 𝑁 (x) + 𝑡
2

𝑑𝑁 (v) + O
(
𝑡2

)
,

where 𝑑 𝑓 ,∇𝑑 𝑓 , 𝑑𝑁 are localized at x. Since ⟨𝑁,𝑑 𝑓 (v)⟩ = 0 point-

wise for all v ∈ 𝑇𝑀 , it follows by differentiation that

⟨𝑑𝑁 (v), 𝑑 𝑓 (v)⟩ + ⟨𝑁, (∇𝑑 𝑓 ) (v, v)⟩ = 0,

and therefore the difference vector 𝑓
(
expx (𝑡v)

)
− 𝑓 (x) satisfies〈

𝑓
(
expx (𝑡v)

)
− 𝑓 (x), 𝑁

(
expx

( 𝑡
2

v
))〉

= 0 + O
(
𝑡3

)
.

Thismeans that the inner product of the difference vector 𝑓
(
expx (𝑡v)

)
−

𝑓 (x) with the normal vector in the middle vanishes to second order,

inspiring a constraint for the shape-controlled minimization of QC𝜇 .
In particular, to keep the image of 𝑓 close to the given reference

immersion 1𝑀 it is reasonable to require that

⟨𝑓 (x) − 1𝑀 (x), 𝑁𝑚𝑖𝑑 (x)⟩ = 0,

where𝑁𝑚𝑖𝑑 = (1/2) (𝑁
old
+ 𝑁new) approximates the normal halfway

between the image of 1𝑀 and the image of 𝑓 . This ensures that

the difference vectors between the points of 𝑀 and 𝑓 (𝑀) remain

nearly tangential to the same implicit “surface” halfway between

them, and can be implemented as a (nonlinear) constraint during

the minimization of QC𝜇 using a Lagrange multiplier.

For the purposes of this work, it is enough to choose 𝑁 = 𝑁
old

,

giving a linearized version of this constraint which preserves the

convexity of the problem. In particular, consider finding a pair of

functions 𝑣 : 𝑀 → R3
and 𝜌 : 𝑀 → R which satisfy

argmin

𝑣,𝜌

(
QC𝜇 (1𝑀 + 𝑣) +

∫
𝑀

𝜌 ⟨𝑣, 𝑁 ⟩ 𝑑𝑆𝑔 +
𝜀

2

∫
𝑀

𝜌2 𝑑𝑆𝑔

)
,

Fig. 10. Two qualitatively different quasiconformal mappings (left, middle)
from the torus with with boundary (right) computed by minimizing QC𝜇
with Algorithm 1 with different boundary conditions. See Figure 16 in Sec-
tion 6 for a quantitative view.

where 𝜀 > 0 is a fixed penalty parameter and 𝑣 |𝜕𝑀 = 0. Then,

𝑓 = 1𝑀 + 𝑣 minimizes QC𝜇 and satisfies the desired constraint.

Formulated weakly, desired pair 𝑣, 𝜌 should satisfy the system

0 = 𝛿QC𝜇 (1𝑀 + 𝑣) 𝜑 +
∫
𝑀

𝜌 ⟨𝜑, 𝑁 ⟩ 𝑑𝑆𝑔,

0 =

∫
𝑀

𝜓 ⟨𝑣, 𝑁 ⟩ 𝑑𝑆𝑔 + 𝜀
∫
𝑀

𝜓𝜌 𝑑𝑆𝑔,

for all suitable variations 𝜑 : 𝑀 → R3
and 𝜓 : 𝑀 → R. The

mapping 𝑓 = 1𝑀 + 𝑣 which minimizes this modified problem is

then quasiconformal with normal field 𝑁 suitably close to that

of the original surface 𝑀 . Figure 11 and others in Section 6 show

that this procedure is suitable for producing quasiconformal maps

which preserve extrinsic features even around corners and delicate

contours in the mesh such as facial expressions.

Remark 4.1. Here, the penalty parameter 𝜀 ≈ 10
−5

is used to

ensure 𝐿2
-regularity for the Lagrange multiplier 𝜌 .

Fig. 11. Optimal quasiconformal remeshings of a cat with genus 1 and 19
boundary components with respect to an equi-angular conformal structure
(c.f. Section 6.2). The original surface (middle) is mapped through QC Itera-
tion with preserved extrinsic geometry (right) and preserved area (left). See
Figure 19 in Section 6 for a quantitative view.

4.2 Preserving surface area
Recall that the minimizing the quasiconformal distortionQC𝜇 in the
metric 𝑔 is equivalent to minimizing the Dirichlet energy D𝑔 (𝜇) in
the metric 𝑔(𝜇) when the area of the target is fixed (see Appendix A

for details). Since this area is variable when the target surface is

defined implicitly through the mapping 𝑓 , it is useful to have a

constraint which fixes this quantity. This provides a reliable way

to produce constrained harmonic maps which often improves the

numerical results, especially in the case of the QC Iteration seen in

Section 5. The present constraint follows by considering the surface

area functional A, defined as

A(𝑓 ) =
∫
𝑀

1𝑑𝑆𝑓 ∗𝛿 =

∫
𝑀

𝑁

2

𝑑 𝑓 ∧ 𝑑 𝑓 .

Standard techniques give the derivative ofA at 𝑓 in the direction 𝜑 ,

𝛿A(𝑓 )𝜑 =

∫
𝑀

⟨𝑑 𝑓 , 𝑑𝜑⟩ 𝑑𝑆𝑓 ∗𝛿 ,
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yielding a nonlinear constraint that can be implemented alongside

the minimization of QC𝜇 . On the other hand, the applications in

Section 6 will almost always consider 𝑓 = 1𝑀 +𝑣 for some perturba-

tion 𝑣 : 𝑀 → R3
as before. To retain convexity of the minimization

in this case, it is reasonable to consider a heuristic constraint which

is linear and exhibits good practical behavior. To that end, recall

that the area element 𝑑𝑆1∗
𝑀
𝛿 = |𝑑1𝑀 |2 since 1𝑀 is conformal (c.f.

Appendix A), so that the area of𝑀 in terms of its reference metric

𝑔 = 1∗
𝑀
𝛿 can be expressed as

𝐴0 := A (1𝑀 ) =
∫
𝑀

|𝑑1𝑀 |2 .

It follows that the difference in area between 𝑓 (𝑀) and 𝑀 can be

approximated by quantities depending only on 𝑔,

A(𝑓 ) −𝐴0 =

∫
𝑀

1𝑑𝑆𝑓 ∗𝛿 −
∫
𝑀

|𝑑1𝑀 |2 ≈
∫
𝑀

⟨𝑑1𝑀 , 𝑑𝑣⟩ 𝑑𝑆𝑔 .

With this, consider computing functions 𝑓 : 𝑀 → R3
and 𝜆 : 𝑀 →

R which satisfy

argmin

𝑣,𝜆

(
QC𝜇 (1𝑀 + 𝑣) + 𝜆

∫
𝑀

⟨𝑑1𝑀 , 𝑑𝑣⟩ 𝑑𝑆𝑔
)
,

where 𝑣 |𝜕𝑀 = 0 and 𝐴0 = A (1𝑀 ). This is a convex minimization

problem (over an appropriate function space) whose global solution

can again be computed from weak-form equations. In particular,

the desired pair 𝑣, 𝜆 should satisfy the system

0 = 𝛿QC𝜇 (1𝑀 + 𝑣) 𝜑 + 𝜆
∫
𝑀

⟨𝑑1𝑀 , 𝑑𝜑⟩ 𝑑𝑆𝑔,

0 = 𝜓

∫
𝑀

⟨𝑑1𝑀 , 𝑑𝑣⟩ 𝑑𝑆𝑔,

for all suitable variations 𝜑 : 𝑀 → R3
and𝜓 : 𝑀 → R. The unique

mapping 𝑓 satisfying this system is both a minimizer of QC𝜇 and an
approximately constrained harmonic mapping in the metric 𝑔(𝜇).

Remark 4.2. Note that the above system is underdetermined when

the surface is closed, since only derivatives of the test functions are

used. Therefore, the position of one point on𝑀 is fixed whenever

this is the case.

4.3 Minimization Algorithm
The final goal of this Section is to describe in detail the present

algorithm for computing minimizers of QC𝜇 in the framework of

piecewise linear finite elements. Here it is assumed that the source

surface𝑀ℎ ≈ 𝑀 is given as a structured or unstructured orientable

manifold mesh of triangles or quadrilaterals which are not degener-

ate. This implies that the interior angles of each element must be

bounded below, although this bound may be very close to zero in

practice as in the case of Figures 1 and 19. Under this assumption,

𝑀ℎ can be expressed as the union

𝑀ℎ =
⋃
𝑇 ∈I

𝑇,

where each𝑇 is a polygonal element of the discrete surface indexed

by I. Additionally, it will be assumed that the vertices of 𝑀ℎ are

embedded in R3
, so that𝑀ℎ ⊂ R3

carries a submanifold structure

via the usual inclusion mapping 1𝑀ℎ
: 𝑀ℎ → R3

. In practice,

it is convenient to “coordinatize” 𝑀ℎ with local parametrizations

𝑋ℎ : 𝑈ℎ → 𝑀ℎ so that 1𝑀ℎ
◦ 𝑋ℎ = 𝑋ℎ and each element 𝑇 is the

image of a reference (or parent) polygon 𝑇 ⊂ R2
(warning: this is

reversed from the usual notion of coordinate chart). This implies

that functions on 𝑀ℎ may be discretized using a piecewise-linear

polynomial basis (or tensor product of these) supported on each

reference element (see e.g. [Dziuk and Elliott 2013, Section 4.3-4.4]).

In particular, if the preimages through 𝑋ℎ of the 𝑛 nodes of𝑀ℎ are

denoted by {𝑣𝛼 }𝑛𝛼=1
, the standard Lagrange nodal basis {𝜙𝛼 }𝑛𝛼=1

on 𝑈ℎ satisfies 𝜙𝛼 (𝑣𝛽 ) = 𝛿𝛼𝛽 for all 1 ≤ 𝛼, 𝛽 ≤ 𝑛. The space of

piecewise-linear finite elements on𝑈ℎ can then be expressed as

Span{𝜙𝛼 } = {𝜙 ∈ 𝐶0 (𝑈ℎ)) : 𝜙 |
𝑇
∈ F1

(
𝑇

)
,𝑇 ∈ T },

where F1 denotes the space of linear polynomials P1 when 𝑇 is

triangular and the tensor product space Q1 when𝑇 is quadrangular.

Note that this defines an analogous (nonlinear) basis 𝜑 = 𝜙 ◦𝑋ℎ for

functions on the surface𝑀ℎ .

Remark 4.3. To simply the presentation, the remainder of the

manuscript assumes the Einstein summation convention. Therefore,

any tensor index appearing twice in an expression (once up and once

down) is implicitly summed over its appropriate range. Similarly, the

subscript ℎ on discrete quantities will be omitted when the context

is clear.

Fig. 12. The parametrization 𝑋 coordinatizes a portion of the surface 𝑀 .
The vector fields 𝝏𝑖 form a basis for𝑇𝑝𝑈 , while their images X𝑖 = 𝑑𝑋 (𝝏𝑖 )
form a basis for𝑇𝑋 (𝑝 )𝑀 .

To describe the present discretization more precisely, suppose

the smooth surface𝑀 is coordinatized by local parameterizations,

each of which looks like 𝑋 : 𝑈 → 𝑀 for some domain 𝑈 ⊂ R2

(see Figure 12). It follows that if {𝑥1, 𝑥2} are coordinates on𝑈 , then

{𝝏1, 𝝏2} form the standard basis for 𝑇𝑈 where 𝝏𝑖 := 𝜕/𝜕𝑥𝑖 . As usual,
the domain𝑈 is endowed with the pullback metric 𝑔 = 𝑋 ∗𝛿 so that

𝑋 = 1𝑀 ◦ 𝑋 is an isometry of𝑀 (and hence a conformal mapping

𝑈 ↦→ 𝑀). Therefore, the differential of 𝑋 has the expression 𝑑𝑋 =

X𝑖 ⊗ 𝑑𝑥𝑖 where 𝑑𝑥𝑖 (𝝏𝑗 ) = 𝛿𝑖𝑗 and X𝑖 = 𝑑𝑋 (𝝏𝑖 ) has an expression in

terms of the standard basis {e𝐼 }3𝐼=1
for R3

,

X𝑖 = 𝑋
𝐽
𝑖
e𝐽 , 𝑋

𝐽
𝑖
=
𝜕𝑋 𝐽

𝜕𝑥𝑖
.

This yields local expressions on𝑈 of the Riemannian metric 𝑔 and

area element 𝑑𝑆𝑔 of𝑀 ⊂ R3
as well as the (outward-directed) unit
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normal field to𝑀 , given componentwise as

𝑔𝑖 𝑗 =
〈
X𝑖 ,X𝑗

〉
,

𝑑𝑆𝑔 =
√︁

det𝑔𝑑𝑥1 ∧ 𝑑𝑥2,

𝑁 =
X1 × X2

|X1 × X2 |
.

Letting {𝜔𝑖 } be the dual basis to {X𝑖 } and 𝑔𝑖 𝑗 be the components

of the metric inverse defined by 𝑔𝑖𝑘𝑔𝑘 𝑗 = 𝛿
𝑖
𝑗
, the differential of any

function 𝑓 : 𝑀 → R3
can be locally expressed on 𝑇𝑀 |𝑋 (𝑈 ) ⊂ 𝑇R3

as

𝑑 𝑓 = F𝑖 ⊗ 𝜔𝑖 = 𝑔𝑖 𝑗F𝑖 ⊗ X𝑗 .
Pulled back to𝑇𝑈 through 𝐹 B 𝑓 ◦𝑋 , the vector fields F𝑖 = 𝑑 𝑓 (X𝑖 ) =
𝑑𝐹 (𝝏𝑖 ) then have an expression in terms of the same standard basis

{e𝐽 },

F𝑖 = 𝐹
𝐽
𝑖
e𝐽 , 𝐹

𝐽
𝑖
=
𝜕(𝑓 ◦ 𝑋 ) 𝐽

𝜕𝑥𝑖
.

These expressions enable a local description of the quasiconfor-

mal distortion QC𝜇 on each parameterization domain𝑈 . First, note

that the discrete BC 𝜇 : 𝑇𝑀ℎ → (𝑇𝑀ℎ)⊥ can be conveniently stored

as a single complex-valued function 𝜇 (X1), since Lemma 3.4 allows

for the computation of any other 𝜇 (v) from this value by expressing

v = 𝑎X1 + 𝑏𝐽X2 for some 𝑎, 𝑏 ∈ R. In particular, it is convenient

to define 𝜇𝐹 := 𝜇 (X1) = 𝜇 ◦ 𝑑𝑋 (𝝏1) giving a representation of 𝜇

on each reference element. Since 𝑋 is conformal, it follows that

𝜇 (X2) = −𝜇 (X1) = −𝜇𝐹 (easily checked with Lemma 3.4), and the

difference 𝑑 𝑓 − − 𝜇 𝑑 𝑓 + applied to the basis vector fields {X𝑖 } has the
expression (

𝐷1 𝑓
𝐼
)
e𝐼 B 𝑑𝐹 − (𝝏1) − 𝜇 ◦ 𝑑𝑋 (𝝏1)𝑑𝐹 + (𝝏1)

=

(
(1 − 𝜇𝐹 )𝐹 𝐼1 + (1 + 𝜇𝐹 )𝑁 𝐹 𝐼

2

)
e𝐼 ,(

𝐷2 𝑓
𝐼
)
e𝐼 B 𝑑𝐹 − (𝝏2) − 𝜇 ◦ 𝑑𝑋 (𝝏2)𝑑𝐹 + (𝝏2)

=

(
(1 + 𝜇𝐹 )𝐹 𝐼2 − (1 − 𝜇𝐹 )𝑁 𝐹 𝐼

1

)
e𝐼 ,

where the quantities 𝜇𝐹 , 𝑁 , e𝐼 are all quaternionic functions. Using
⟨v,w⟩ = Re(vw) along with vw = wv and the fact that the e𝐼 are
pure imaginary yields a local expression for the integrand of QC𝜇 ,

|𝑑 𝑓 − − 𝜇 𝑑 𝑓 + |2 = 𝑔𝑖 𝑗
〈(
𝐷𝑖 𝑓

𝐾
)
e𝐾 ,

(
𝐷 𝑗 𝑓

𝐿
)
e𝐿

〉
= −𝑔𝑖 𝑗 Re

(
𝐷𝑖 𝑓

𝐾e𝐾×𝐿 𝐷 𝑗 𝑓 𝐿
)
,

where it was convenient to introduce the notation

e𝐾×𝐿 =

{
e𝐾 × e𝐿 𝐾 ≠ 𝐿,

−1 𝐾 = 𝐿.

Putting this together, the quasiconformal distortion of the local

image 𝐹 (𝑈 ) for any𝑈 ↦→ 𝑀 has the representation

QC𝜇 (𝑓 ) =
∫
𝑋 (𝑈 )

|𝑑 𝑓 − − 𝜇 𝑑 𝑓 + |2 𝑑𝑆𝑔

=

∫
𝑈

−𝑔𝑖 𝑗 Re

(
𝐷𝑖 𝑓

𝐾e𝐾×𝐿 𝐷 𝑗 𝑓 𝐿
) √︁

det𝑔𝑑𝑥1 ∧ 𝑑𝑥2,

which can be computed elementwise and summed to give the dis-

tortion of the mapping 𝑓 on the entirety of𝑀 .

Algorithm 1 Least-squares quasiconformal solve for 𝑓 given 𝜇.

Require: Surface 𝑀 ⊂ R3
, mapping

ˆ𝑓 : 𝑀 → R3
. Beltrami coeffi-

cient 𝜇.

1: Let 𝑓 = ˆ𝑓 + 𝑓𝛼𝜑𝛼 , so that 𝐹 = 𝐹 + 𝐹𝛼𝜙𝛼 .
2: Compute the Jacobian of QC𝜇 ,

˜J𝛼𝛽
𝐾

= −2

∫
𝑀

𝑔𝑖 𝑗Re

(
𝐷𝑖𝜑

𝛼e𝐾×𝐿 𝐷 𝑗𝜑𝐿𝛽
)
,

where

∫
𝑀

is shorthand for

∫
𝑈

√︁
det𝑔𝑑𝑥1 ∧ 𝑑𝑥2

.

3: if Normal constraint is active then
4: Initialize 𝜌 = 𝜌 + 𝜌𝛼𝜓𝛼 .
5: Compute the block 2 × 2 Jacobian of the constraint

J =

(
J11 J12

J21 J22

)
=

(
˜J

∫
𝑀
𝜓𝛼

〈
𝝓𝛽 , 𝑁

〉∫
𝑀
𝜓𝛽𝜙𝛼𝑁 𝜀

∫
𝑀
𝜓𝛼𝜓𝛽

)
,

6: Form the residual vector

R𝛽 = J𝛼𝛽 · 𝑆𝛼 , 𝑆𝛼 =

(
F̂𝛼 𝜌𝛼

)⊺
.

7: Solve the linear system

J · 𝑆 = −R, 𝑆𝛼 =
(
F𝛼 𝜌𝛼

)⊺
.

8: else if Area constraint is active then
9: Initialize 𝜆 = ˆ𝜆.

10: Compute the block 2 × 2 Jacobian of the constraint

J =

(
J11 J12

J21 J22

)
=

(
ˆ𝜆
∫
𝑀
𝑔𝑖 𝑗𝜙𝛼

𝑖
𝝓
𝛽

𝑗

∫
𝑀
𝑔𝑖 𝑗

〈
F̂𝑖 , 𝝓

𝛽

𝑗

〉∫
𝑀
𝑔𝑖 𝑗𝜙𝛼

𝑗
F̂𝑖 0

)
.

11: Augment J11 += ˜J .

12: Form the residual vector

R𝛽 = J𝛼𝛽 · 𝑆𝛼 , 𝑆𝛼 =

(
F̂𝛼 ˆ𝜆

)⊺
.

13: Solve the linear system

J · 𝑆 = −R, 𝑆𝛼 =
(
F𝛼 𝜆

)⊺
.

14: else
15: Form the residual vector R𝛽 = ˆJ𝛼𝛽 · 𝑆𝛼 where 𝑆𝛼 = F̂𝛼 .
16: Solve the linear system J · 𝑆 = −R for 𝑆𝛼 = F𝛼 .
17: end if
18: return 𝐹 = 𝑓 ◦ 𝑋 .

Generating linear systems for the minimization problems dis-

cussed in this Section is now straightforward. Recall that a discrete

function 𝑓 : 𝑀ℎ → R3
can be represented component-wise in the

nodal basis {𝜙𝛼 } for𝑈ℎ as

𝐹𝐾 = (𝑓 ◦ 𝑋 )𝐾 = 𝐹𝐾𝛼 𝜙
𝛼 ,

where 𝐹𝐾𝛼 denotes the value of the 𝐾𝑡ℎ component of 𝐹 at (global)

node 𝛼 . It follows that the derivative of 𝑓 in the direction X𝑖 is then

𝑑 𝑓 (X𝑖 ) = 𝐹𝐾𝑖 e𝐾 = 𝐹𝐾𝛼 𝜙
𝛼
𝑖 e𝐾 = F𝛼𝜙𝛼𝑖 ,
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so that the variation of QC𝜇 (𝑓 ) can be expressed as the linear

system (𝑈 = ∪𝑈ℎ)

J𝛼𝛽
𝐾

𝐹𝐾𝛼 B 𝛿QC𝜇 (𝑓 )𝝋𝛽

= 𝐹𝐾𝛼

∫
𝑈

−2𝑔𝑖 𝑗 Re

(
𝐷𝑖𝜑

𝛼e𝐾×𝐿 𝐷 𝑗𝜑𝐿𝛽
) √︁

det𝑔𝑑𝑥1 ∧ 𝑑𝑥2,

where J is the Jacobian operator and the vector test function 𝝋𝛽 =

𝜑𝐿𝛽e𝐿 is simply three independent copies of the nodal vector 𝜑𝛽 ,

since the test functions for each coordinate are the same. Expressing

𝑓 = ˆ𝑓 + 𝑓𝛼𝜑𝛼 for some known function
ˆ𝑓 : 𝑀 → R3

(such as

ˆ𝑓 = 1𝑀 ) then yields the linear system

J · 𝑆 = −R, R𝛽 = J𝛼𝛽 · F̂𝛼 = J𝛼𝛽
𝐾

𝐹𝐾𝛼 ,

which is readily solved for the nodal values 𝐹𝐾𝛼 . The desiredmapping

𝐹 = 𝑓 ◦ 𝑋 is then reconstructed from these values by linear inter-

polation over the mesh. Note that the constraints from Sections 4.1

and 4.2 can be discretized analogously and included along with this

procedure, leading to the least-squares quasiconformal mapping

procedure described in Algorithm 1. The examples from this paper

were implemented in the open source finite element library FEMuS

[Aulisa et al. 2014], and the Boost library [Schäling 2011] was used

to compute the relevant quaternion products.

Remark 4.4. Since Algorithm 1 is formulated for mappings with an

implicit target, it is not immediately obvious if it also has advantages

in the more traditional setting of mappings between fixed Riemann

surfaces𝑀 ↦→ 𝑃 both given as e.g. manifold meshes in R3
. On the

other hand, since the geometry of 𝑃 is known, constraints like those

introduced here can certainly be implemented to keep the image

of𝑀 close to 𝑃 in an appropriate sense. This is essentially what is

done in the remeshing examples to keep the image from “spilling

out” of the original surface.

5 QUATERNIONIC QC ITERATION
Algorithm 1 provides a novel technical tool for computing quasicon-

formal mappings between immersed surfaces in Euclidean space,

and can be applied when the target surface is explicit or implicit (c.f.

Remark 4.4). As an interesting application of this new technology,

consider how Algorithm 1 can be used to facilitate the QC Iteration

from Section 2.3 in this more general setting. First, note that all the

theory regarding extremal quasiconformal mappings discussed in

Section 2.1 translates immediately to the quaternionic setting of

maps 𝑓 : 𝑀 → 𝑓 (𝑀) ⊂ R3
. In particular, extremal Teichmüller

mappings or close approximations thereof exist in every homotopy

class of maps relative to 𝜕𝑀 , and these mappings have uniform

conformality distortion across their domain.

As previously mentioned, the QC iteration algorithm from [Lui

et al. 2015, 2014] an approach to computing Teichmüller mappings

through the relationship of the quasiconformal distortion QC𝜇 to
the Dirichlet energy D𝑔 (𝜇) . More precisely, the goal is to use mini-

mizers of QC𝜇 (for fixed 𝜇 and fixed homotopy class [𝑓0]) to con-

struct a sequence of BCs {𝜇𝑘 }𝑛𝑡𝑘=0
(number of iterations 𝑛𝑡 > 0)

which converges to a function 𝜇𝑛𝑡 that is approximately Teich-

müller, i.e. that approximately satisfies Definition 2.1. Accomplish-

ing this requires a way to compute quasiconformal mappings 𝑓

given 𝜇, along with a procedure which encourages 𝜇 to have the

correct local structure at each iteration 1 ≤ 𝑘 ≤ 𝑛𝑡 . It will now be

shown that the quaternionic technology from Section 3 and the least-

squares quasiconformal mapping Algorithm 1 from Section 4 enable

the modified QC Iteration outlined in Algorithm 2, which directly

computes an approximately Teichmüller quasiconformal mapping

𝑓 : 𝑀 → 𝑓 (𝑀) ⊂ R3
satisfying prescribed Dirichlet boundary data.

The remainder of this Section discusses each step of this algorithm

in detail.

Fig. 13. Comparison of LSCM (mid) and Algorithm 2 (right) from a torus
with boundary (left) to a similar surface with different boundary data. Here
again the LSCM does not remain injective despite its much lower average
distortion. Conversely, QC Iteration produces a natural looking map with
near-uniform texture distortion (99% of elements with |𝜇 | ∈ [0.4, 0.5]).

Remark 5.1. It is important to mention that the quaternionic QC

Iteration Algorithm 2 cannot approximate Teichmüller mappings

to arbitrary accuracy when 𝑀 is not simply connected. This is a

consequence of the local phase-based smoothing referred to in Re-

mark 2.5 and discussed in Section 5.3. In this case, the QC Iteration

will optimize for a BC with approximately constant norm which

may or may not be close to an actual Teichmüller mapping. Regard-

less, practical results illustrate that high-quality quasiconformal

mapppings between multiply connected surfaces are achieved with

Algorithm 2 despite this concern, e.g. Figures 13, 10, 9 and others in

Section 6.

Algorithm 2 Overview of the quaternionic QC Iteration

Require: Surface𝑀 ⊂ R3
and homotopy class [𝑓 ′]. Beltrami coef-

ficient 𝜇0 = 0. Stopping tolerance 𝜀 > 0 and maximum iteration

number 𝑛𝑡 > 0.

1: while 0 ≤ 𝑘 ≤ 𝑛𝑡 and QC𝜇𝑘 (𝑓𝑘 ) > 𝜀 do
2: (1) Given 𝜇𝑘 , Minimize QC𝜇𝑘 for 𝑓𝑘 : 𝑀 → R3

.

3: (2) Compute 𝜇𝑘+1 algebraically given 𝑓𝑘 .

4: (3) Post-process 𝜇𝑘+1 to bring it closer to Teichmüller form.

5: (4) Minimize QC𝜇 (𝑓𝑘 ) for 𝜇 on the line between 𝜇𝑘 and 𝜇𝑘+1,
generating 𝜇𝑘+1 ← 𝜇.

6: end while
7: return (𝑓 , 𝜇)
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5.1 Step 1: ComputingQuasiconformal Mappings
Given a BC 𝜇 : 𝑇𝑀 → (𝑇𝑀)⊥, the first task is to compute a corre-

sponding map 𝑓 : 𝑀 → R3
which minimizes the quasiconformal

distortion QC𝜇 . The present method for accomplishing this was dis-

cussed at length in Section 4 and culminated in Algorithm 1, which

is a linear procedure for computing a least-squares quasiconformal

mapping when 𝜇 is stored as a value per-element aligned with the

vector field X1 = 𝑑𝑋 (𝝏1). It is worth mentioning that the mapping

computed in this process will generally not be harmonic with re-

spect to the the metric 𝑔(𝜇) on𝑀 unless the target surface is made

explicit or an area constraint such as that discussed in Section 4.2

is enforced. While this has consequences for the theory developed

in [Lui et al. 2015], it does not seem to hinder the performance of

the QC Iteration much in practice, as high-quality quasiconformal

mappings are produced despite this aspect.

5.2 Step 2: Computing the Beltrami Coefficient
Once a particular quasiconformal mapping 𝑓 : 𝑀 → R3

has been

determined, it is necessary to compute its Beltrami coefficent 𝜇

in the complex structure determined by the Gauss map 𝑁 . This

reveals another substantial benefit of the quaternionic approach

from Section 3: since R3 � ImH, computing the desired function

𝜇 : 𝑇𝑀 → (𝑇𝑀)⊥ as in Definition 3.3 becomes a simple algebraic

exercise captured by the follow Lemma.

Lemma 5.2. Let 𝑓 : 𝑀 → ImH be a quasiconformal mapping with
respect to the complex structure induced by 𝑁 : 𝑀 → 𝑆2. Then, the
Beltrami coefficient 𝜇 : 𝑇𝑀 → (𝑇𝑀)⊥, 𝜇 = 𝜇1+𝜇2𝑁 can be expressed
component-wise as

𝜇1 = Re

(
𝑑 𝑓 − 𝑑 𝑓 +

|𝑑 𝑓 + |2

)
, 𝜇2 = Re

(
𝑑 𝑓 − 𝑁 𝑑𝑓 +

|𝑑 𝑓 + |2

)
,

Proof. Since 𝑑 𝑓 − = 𝜇 𝑑 𝑓 +, the definition of the complex structure

on 𝑇𝑀 induced by 𝑁 yields

𝑑 𝑓 − 𝑑 𝑓 +

|𝑑 𝑓 + |2
= 𝜇1 + 𝜇2𝑁 .

The desired representation now follows from multiplication by 𝑁

and the fact that vw = wv for quaternions 𝑣,𝑤 ∈ H. □

This result provides a quick and straightforward way to extract

the BC 𝜇 of the least-squares minimizer 𝑓 from Step 1 and is given

in pseudocode as Algorithm 3. On the other hand, recall that the

components of 𝜇 are not invariant under changes of basis for 𝑇𝑀 ,

which has consequences for the present implementation since 𝜇𝐹 =

𝜇 (X1) is stored as a complex function per-element. In particular, the

local calculations in Step 3 will require averaging 𝜇𝐹 between mesh

elements, making it necessary to compare values of 𝜇 which are

discretized using different basis vectors X1. This requires careful

consideration of the previously established Lemma 3.4, which is the

analogue of coordinate-dependence for quaternionic BCs.

5.3 Step 3: Post-processing the Beltrami Coefficient
Once the BC 𝜇 has been computed from the most recent mapping 𝑓 ,

the final step in the original QC iteration is to perturb it in a way

which encourages Teichmüller form. More precisely, a combination

Algorithm 3 Computation of 𝜇𝐹 = 𝜇 (X1) from 𝑓 : 𝑀 → R3
.

Require: Quasiconformal mapping 𝑓 : 𝑀 → R3
. Local parameter-

izations 𝑋 : 𝑈 → 𝑀 such that 𝐹 = 𝑓 ◦ 𝑋 .
1: Compute v+ = 𝑑𝐹 + (𝝏1) and v− = 𝑑𝐹 − (𝝏1).
2: Compute the BC

𝜇𝐹 =
v−v̄+

|v+ |2
.

3: return 𝜇1

𝐹
= Re (𝜇𝐹 ) and 𝜇2

𝐹
= −Re (𝜇𝐹𝑁 ).

of projection on the norm |𝜇 | along with local Laplace smoothing

on the phase 𝑒𝑖 arg 𝜇
is performed in order to produce a BC which is

closer to locally optimal as defined by Lemma 2.4. To accomplish

this in the present quaternionic setting, it remains to discuss the

details of the smoothing operations described in Section 2.3. First,

recall that the BC 𝜇 corresponding to the 𝑓 from Step 1 is stored as

a per-element value 𝜇𝐹 = 𝜇 (X1) which is aligned with the image of

the basis vector 𝝏1 coming from the bottom edge of each reference

element. From this data, it is straightforward to extract the polar

decomposition 𝜇𝐹 = |𝜇𝐹 | (𝜇𝐹 /|𝜇𝐹 |), giving the per-element norm

and phase of the BC which can be manipulated separately in an

advantageous way. In particular, since Teichmüller BCs 𝜇 = 𝑘𝑞/|𝑞 |
have constant norm 0 < 𝑘 < 1 and harmonic argument away from

the zeros and poles of the quadratic differential 𝑞 by Lemma 2.4, it

is desirable to perturb these quantities in a way which encourages

this structure. This is straightforward in the case of the norm |𝜇𝐹 |,
and the present method comes immediately from [Lui et al. 2014].

Particularly, if 𝑛𝑇 B |𝑇 | denotes the number of mesh elements, the

average of the norms |𝜇𝐹 | is computed across the mesh,

|𝜇 |avg =
1

𝑛𝑇

𝑛𝑇∑︁
𝐹=1

|𝜇𝐹 | ,

which then replaces the value of |𝜇𝐹 | on each individual element of

the mesh (see Algorithm 4). Seen abstractly, this can be considered

a projection operation onto the space of constant-norm BCs.

The local smoothing operation performed on the phase 𝑒𝑖 arg 𝜇𝐹 =

𝜇𝐹 /|𝜇𝐹 | is more delicate due to the basis-dependence of 𝜇 and is

illustrated in Figure 14. While the main idea is still single-step Ja-

cobi iteration as in [Lui et al. 2014], here it is necessary to compare

the BCs 𝜇𝐹 which are discretized over local vectors X1 which are

globally distinct. To describe this more precisely, consider a refer-

ence element on the parametrization domain𝑈ℎ with basis vector

𝝏1 aligned with its bottom edge. Then, an adjacent edge making

an angle 𝜃 with the bottom edge carries a natural direction vec-

tor given by 𝑒𝑖𝜃 𝝏1 = cos𝜃𝝏1 + 𝑖 sin𝜃𝝏1. Now, unless the image of

this adjacent edge lies on the boundary 𝜕𝑀ℎ , there is some other

element of𝑀ℎ which shares it, and (as the mesh is generally unstruc-

tured) the preimage of the corresponding edge belonging to this

element may not make an angle of 𝜃 with respect to its own bottom

edge vector 𝝏1. Therefore, it is not sufficient to simply average both

representations 𝜇𝐹 = 𝜇 (X1) directly, as there is no guarantee that
the tangent spaces of neighboring elements on 𝑀ℎ are properly

aligned. On the other hand, it follows from Lemma 3.4 that the BC

discretized on any tangent vector is computable from 𝜇 (X1), i.e. if
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𝑎 = 𝑒𝑖𝜃 then 𝜇 (𝑎X1) = �̄�2𝜇 (X1) (recall that 𝑋 is conformal). There-

fore, a local Jacobi iteration as in [Lui et al. 2014] is still feasible

provided the discrete representations of 𝜇 are adjusted in this way

beforehand. Moreover, it is clear that the reflection 𝑎X1 ↦→ −𝑎X1

induces no change in 𝜇, so that the values of 𝜇 on shared edges will

be component-wise comparable.

In view of this discussion, the present smoothing on the phase

of 𝜇 involves first localizing the phase 𝜇𝐹 /|𝜇𝐹 | = 𝑒𝑖 arg 𝜇𝐹
to the

edges of each mesh element, averaging its values there, and finally

re-projecting these averaged values back into the elements (c.f. Al-

gorithm 4). More precisely, consider an element 𝑇 and the positive

angle 𝜃𝑖 = ∠(𝝏1, E𝑖 ) which each edge vector E𝑖 of 𝑇 makes with

edge vector 𝝏1. Then, the projection matrix from 𝑇 to local edge 𝑖

follows directly from Lemma 3.4 and is built as

𝑃 (𝜃𝑖 ) =
(
cos

2 𝜃𝑖 − sin
2 𝜃𝑖 −2 cos𝜃𝑖 sin𝜃𝑖

2 cos𝜃𝑖 sin𝜃𝑖 cos
2 𝜃𝑖 − sin

2 𝜃𝑖

)
,

so that 𝜇𝐹,𝑖 B 𝑃 (𝜃𝑖 )𝜇𝐹 (interpreted as matrix multiplication) gives

the appropriate value of 𝜇𝐹 on the 𝑖𝑡ℎ edge of 𝑇 . Doing this over

all elements 1 ≤ 𝑇 ≤ 𝑛𝑇 gives the local per-edge phases 𝜇𝐹,𝑖/|𝜇𝐹 |
(note that det 𝑃 (𝜃𝑖 ) = 1) that can be averaged according to how

many elements share each edge. In particular, since reversing the

orientation of an edge does not change the value of the phase, it

suffices to add the contributions of each local edge 𝜇𝐹,𝑖/|𝜇𝐹 | to the

global edge phase 𝑒𝑖 arg 𝜇𝛼
, 1 ≤ 𝛼 ≤ 𝑛𝐸 and then divide by the

number of elements sharing edge 𝛼—either 1 or 2, for boundary or

internal edges, respectively. This action yields a smoothed phase

in each edge, which can be averaged back from the edges to the

elements 𝑇 with the matrices 𝑃 (𝜃𝑖 )⊺ . Finally, once the norm and

the phase of 𝜇𝐹 have been independently averaged, the new BC on

the each reference element 𝑇 is reconstructed as

𝜇𝐹 ← |𝜇 |avg S
(
𝑒𝑖 arg 𝜇𝐹

)
,

where S denotes the local smoothing operation just discussed. Pseu-

docode for the entire procedure outlined this Subsection is given in

Algorithm 4.

Remark 5.3. Notice that only one step of Jacobi iteration is per-

formed during the post-processing of 𝜇𝐹 . Empirically, more smooth-

ing than this generally produces a QC Iteration terminating in a

“worse” BC with less uniform distortion and a higher maximum

value. Theoretically, this is related to the fact that the perturbation

𝜇 + 𝜀𝜈 is not guaranteed to produce an energy E(𝜇 + 𝜀𝜈) which is

smaller than E(𝜇) when Re

∫
𝑀
𝑄 (𝑓 )𝜈 𝑑𝑆𝑔 (𝜇) < 0. Here 𝑄 (𝑓 ) is the

Hopf differential and E is the “Beltrami energy” (see [Lui et al. 2015,

Lemma 4.1] and Appendix B).

5.4 Step 4: Ensuring the Distortion is Non-increasing
The final step in the quaternionic QC Iteration presented here is

to ensure that the distortion QC𝜇 does not increase during the

perturbative Step 3. Recall from Remark 2.5 that the local smoothing

on the phase of 𝜇𝐹 is really a surrogate for similar smoothing on

the argument, and these procedures are inequivalent for multiply

connected 𝑀 . Therefore, it is not guaranteed that Step 3 actually

makes progress in every case, and it is useful to include a line search

which forces the iteration to converge when no more progress can

Fig. 14. Step 3 of the QC iteration in the discrete setting applied to an
element with equilateral angles. Note the local averaging of the norm and
phase as outlined in Algorithm 4.

Algorithm 4 Post-processing of 𝜇𝐹 .

Require: Triangulation (or quadrangulation) T of the surface𝑀

with cardinality 𝑛𝑇 , per-element values 𝜇𝐹 , local-to-global edge

mapping 𝛼 (𝐹, 𝑖).
1: Initialize |𝜇 |avg = 0

2: for element 1 ≤ 𝑇 ≤ 𝑛𝑇 do
3: Update |𝜇 |avg += |𝜇𝐹 |𝑛𝑇

4: Normalize 𝜇𝐹 ←
𝜇𝐹
|𝜇𝐹 |

5: end for
6: for edge 1 ≤ 𝛼 ≤ 𝑛𝐸 do
7: Initialize 𝜇𝛼 = 0 and 𝑙𝛼 = 0

8: end for
9: for element 1 ≤ 𝑇 ≤ 𝑛𝑇 do
10: for edge 1 ≤ 𝑖 ≤ 𝑛𝑒 do
11: Compute 𝜃𝑖 = ∠(𝝏1, E𝑖 )
12: Update 𝜇𝛼 (𝐹,𝑖) += 𝑃 (𝜃𝑖 ) 𝜇𝐹 and 𝑙𝛼 (𝐹,𝑖) += 1

13: end for
14: end for
15: for edge 1 ≤ 𝛼 ≤ 𝑛𝐸 do
16: Average 𝜇𝛼 ← 𝜇𝛼

𝑙𝛼
17: end for
18: for element 1 ≤ 𝑇 ≤ 𝑛𝑇 do
19: Initialize 𝜇𝐹 = 0

20: for edge 1 ≤ 𝑖 ≤ 𝑛𝑒 do
21: Compute 𝜃𝑖 = ∠(𝝏1, E𝑖 )
22: Update 𝜇𝐹 +=

1

𝑛𝑒
𝑃 (𝜃𝑖 )⊺𝜇𝛼 (𝐹,𝑖)

23: end for
24: Compute arg 𝜇𝐹 = atan2(𝜇2

𝐹
, 𝜇1

𝐹
)

25: end for
26: return 𝜇𝐹 ← |𝜇 |avg 𝑒

𝑖 arg 𝜇𝐹

be made without increasing the value of QC𝜇 . This is done by

searching for the energetically optimal Beltrami coefficient on the

straight line between the iterates 𝜇𝑘 and 𝜇𝑘+1 (c.f. Algorithm 5)

when the previously computed mapping 𝑓𝑘 is fixed. In particular,

consider the linear combination

𝜇 (𝑡) = 𝑡𝜇𝑘+1 + (1 − 𝑡)𝜇𝑘 ,
of the BC 𝜇𝑘 from the beginning of iteration stage𝑘 and the smoothed

BC 𝜇𝑘+1 from Step 3. Then, using ¤𝜇 = 𝜇𝑘+1 − 𝜇𝑘 to denote differen-

tiation with respect to the parameter 𝑡 , the derivative of QC(𝑓𝑘 ) is
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given by

𝑑

𝑑𝑡
QC𝜇 (𝑓𝑘 ) = −

∫
𝑀

⟨ ¤𝜇 𝑑 𝑓𝑘 +, 𝑑 𝑓𝑘 − − 𝜇 𝑑 𝑓𝑘 +⟩ 𝑑𝑆𝑔,

where ⟨·, ·⟩ denotes the Euclidean inner product as before which

happens after the quaternionic products in its arguments. Setting

the above equal to zero and solving for 𝑡 then yields the minimizing

parameter value

𝑡0 =

∫
𝑀
⟨ ¤𝜇 𝑑 𝑓𝑘 +, 𝑑 𝑓𝑘 − − 𝜇𝑘 𝑑 𝑓𝑘 +⟩ 𝑑𝑆𝑔∫

𝑀
| ¤𝜇 𝑑 𝑓𝑘 + |2 𝑑𝑆𝑔

,

which corresponds to the optimal BC along this linear interpolation.

Setting 𝜇𝑘+1 ← 𝜇 (𝑡0) then gives an updated BC which is used as

input to the next iteration.

Remark 5.4. It is worth mentioning again that Step 4 is not present

in the original QC Iteration of [Lui et al. 2014], and is not strictly

necessary for it to be applied. On the other hand, faster convergence

and better overall performance is observed when it is included,

despite the fact that QC𝜇 (𝑓𝑘 ) is computed with respect to the pre-

vious iterate 𝑓𝑘 and not the “current” least-squares quasiconformal

minimizer 𝑓 (𝑡) corresponding to 𝜇 (𝑡).

6 EXAMPLES AND APPLICATIONS
Now that the QC Iteration algorithm has been extended to the

quaternionic setting of maps from immersed surfaces 𝑀 ⊂ R3
,

some useful applications are discussed. While there are many varied

uses for computational quasiconformal maps, the two discussed at

present relate to object deformation and surface remeshing. Note

that the histograms shown here and throughout the rest of the paper

report the norm of the BC 𝜇 with respect to a pre-specified conformal

structure on𝑀 (computed by Algorithm 5 unless otherwise stated),

and the vertical axis of each histogram displays the percentage of

elements in each bin.

6.1 Object deformation
Certain tasks in animation and graphics require a natural looking

map between objects which satisfies some prescribed boundary data.

It will now be shown that Algorithm 1 and the quaternionic QC

Iteration Algorithm 2 can be useful for this purpose by producing

evenly distorted mappings which nicely interpolate some given

boundary data. Qualitative examples of this have already been seen

in Figures 9, 10, and 13, but it is enlightening to discuss more quan-

titative aspects of Algorithms 1 and 2 as well. Figure 15 shows how

a genus zero surface with 6 boundary components is deformed by

an optimal Teichmüller map computed with QC Iteration to satisfy

the given boundary conditions. Here the structure of the mapping is

nicely visible: the norm |𝜇 | is nearly constant and 𝜇 is discontinuous
at the zeroes and poles of its associated quadratic differential. Sim-

ilarly, Figure 16 shows two optimal mappings satisfying different

prescribed boundary data computed with Algorithm 2 from an open

(genus 1) torus. Again, it can be seen that the BC 𝜇 is discontinu-

ous and relatively uniform across the target surfaces, as expected.

Finally, Figure 17 and the previously seen Figure 5 provide quan-

titative views into the mappings seen in Figures 2 and Figure 9,

respectively. Notice from Figure 17 that the quaternionic QC Itera-

tion is also applicable to planar domains by choosing any constant

vector as normal, e.g. 𝑁 =
(
0 0 1

)⊺
, and produces the expected

results which respect injectivity by construction. Moreover, Figure 5

shows that injectivity can be preserved with Algorithm 5 even when

the shape of the target surface is implicit using e.g. the constraint

formulated in Section 4.1.

Fig. 15. An optimal quasiconformal mapping of a multiply connected do-
main computed using the (unconstrained) QC Iteration Algorithm 2 for
prescribed boundary data. Top row: source and target surfaces (left, middle)
colored by |𝜇 |, histogram of |𝜇 | (right). Bottom row: Laplacian Δ𝜇1 (left),
components of the BC 𝜇 (middle, right). Notice that 𝜇 is discontinuous and
nearly harmonic away from its zeros as expected.

Fig. 16. A quantitative view of the tori from Figure 10 computed with the
(unconstrained) QC Iteration Algorithm 2. Top row: source surface (left) and
target surfaces (middle, right) computed for different given boundary data,
colored by |𝜇 |. Bottom row: histogram (left), 𝜇1-values (middle, right) for
each surface above.

6.2 Surface remeshing
Most methods for solving PDEs on surface data are only as accurate

as the mesh which discretizes the surface 𝑀 . Here we show that

the quaternionic QC Iteration can be useful for generating a more

regular discretization of a given surface 𝑀 ⊂ R3
by optimizing

the angles between mesh elements. To that end, suppose (𝑀,𝑔) is
given where 𝑔 = 1∗

𝑀
𝛿 is the metric inherited from the embedding

of the vertex positions (note that this is only necessary to define

the conformal class). The idea behind remeshing with Algorithm 1
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Fig. 17. A quantitative view of the LSCM and TQCM mappings in Figure 2
computed using a reference conformal structure of regular squares. Top row:
source surface (left), LSCM (middle), and TQCM (right) all colored by |𝜇 |.
Bottom row: histogram (left), plots of 𝜇1 (middle, right) for the mappings
above.

is to find an optimal quasiconformal mapping 𝑓 : (𝑀,𝑔
ref
) →

(𝑀,𝑔) in the homotopy class of 1𝑀 which preserves the extrinsic

geometry of𝑀 but changes its conformal class in a beneficial way

(quasiconformal to [𝑔
ref
]), effectively making the mesh elements

more regular. This can be done by carrying out the QC Iteration

from Section 5 using the constraint formulated in Section 4.1, which

will search for a dilatation-optimal map from the conformal class

of a desired reference metric 𝑔
ref

to the immersed surface which

respects the surface normal 𝑁 . Some examples of this are displayed

in Figures 1, 20, 18, and 19, which show how the QC Iteration

produces surfaces with near-uniform distortion despite the use of

very irregular initial data.

Fig. 18. QC remeshings of a moai statue (left) colored by |𝜇 |, constructed by
QC Iteration with different constraints and with respect to the conformal
structure given by Algorithm 5. Note that the normal constraint from Sec-
tion 4.1 (middle) preserves extrinsic features with only minimal rounding of
sharp features, while the area constraint from Section 4.2 (right) produces
lower conformal distortion at the cost of a rounder extrinsic shape.

To elaborate on this procedure, note that the remeshing just de-

scribed is dependent on the conformal class of the metric 𝑔
ref

, i.e.

on a set of interior angles provided by the user. This reflects the fact

that QC𝜇 will measure the (local) 𝜇-quasiconformal distortion of a

mapping 𝑓 ◦ 𝑋 : 𝑈 → R3
with respect to a particular discretization

𝑈ℎ of 𝑈 . In particular, the specific deviation from 𝜇-conformality

will be reflected in the way mesh elements are distorted as they

move from 𝑈ℎ into R3
under this mapping, so it is important to

pre-specify an appropriate configuration of angles on𝑈ℎ to which

the target surface 𝑓 (𝑀ℎ) should be quasiconformal. Of course, there

is an obvious choice for this: simply pull back the initial triangula-

tion/quadrangulation of𝑀ℎ onto the reference domains𝑈ℎ so that

𝑔
ref
∈ [𝑔]. However, this is undesirable for at least two reasons.

First, it is often the case that the angles coming from the initial

configuration are nearly degenerate (see e.g. Figure 19 and Figure 1),

so this choice is not useful if the goal is to improve the existing mesh

on the surface. Second and most importantly, the identity mapping

is always conformal (hence quasiconformal with distortion zero),

so in fact this choice only produces a trivial minimizer which will

not remesh the surface at all.

Algorithm 5 Generation of reference angles

Require: Reference discretization T of the closed surface𝑀 .

1: for 𝑇 ∈ T do
2: if T is triangle then
3: 𝑁𝑇 = 3, Θ = 𝜋

4: else if T is quadrilateral then
5: 𝑁𝑇 = 4, Θ = 2𝜋

6: end if
7: for vertex 1 ≤ 𝑖 ≤ 𝑁𝑇 do
8: Compute𝑚𝑖 = # of adjacent elements

9: 𝛼𝑖 ← 2𝜋/𝑚𝑖
10: end for
11: Determine maximum vertex angle 𝛼𝑖 .

12: if 𝛼𝑖 > 𝛼 𝑗 for all 𝑗 ≠ 𝑖 then
13: 𝛽𝑖 = 𝛼𝑖
14: for vertices 𝑗 ≠ 𝑖 do
15: 𝛽 𝑗 = 𝛼 𝑗 (Θ − 𝛼𝑖 ) /

(∑
𝑘≠𝑖 𝛼𝑘

)
16: end for
17: else
18: for vertices 1 ≤ 𝑗 ≤ 𝑁𝑇 do
19: 𝛽 𝑗 = 𝛼 𝑗 Θ /

(∑𝑁𝑇

𝑘=1
𝛼𝑘

)
.

20: end for
21: end if
22: end for
23: return 𝛽

Another simple and useful possibility for the reference discretiza-

tion is to require the interior angles to be as close as possible to

𝜋/3 in triangular elements and 𝜋/2 for quadrangular elements. This

encourages the target to be quasiconformally flat when the connec-

tivity of𝑀 is perfectly regular, and provides a reasonable general

purpose choice for remeshing applications (see e.g. Figure 19). How-

ever, this choice can also lead to a sub-optimal mapping for highly
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Fig. 19. QC remeshings of a kitten mesh (colored by |𝜇 |) with genus one
and 19 boundary components constructed using the QC Iteration algorithm
from Section 5 with respect to an equi-angular conformal structure. Left:
original surface; Middle: remeshing with normal constraint (c.f. Section 4.1).
Right: remeshing with area constraint (c.f. Section 4.2). Bottom: histogram
of |𝜇 |.

irregular meshes, as vertices of the surface 𝑀ℎ may lie on a vari-

able number of elements. In this case, it can be more beneficial to

use the “optimized” Algorithm 5 to determine shape of each ref-

erence element. This procedure chooses interior angles in such a

way that the largest angle of each element dominates the choice of

conformal structure. To describe this in more detail, consider that

any vertex 𝑣𝑖 away from the boundary is surrounded by a fixed

number of elements 𝑚𝑖 , and for each element containing 𝑣𝑖 it is

desirable for the corresponding interior angle 𝛼𝑖 to be as close as

possible to 2𝜋/𝑚𝑖 . Moreover, the sum of the interior angles 𝛼𝑖 in

each element should equal 𝜋 or 2𝜋 for triangular or quadrilateral

elements, respectively. Therefore, if a leading vertex 𝑣𝑖 exists in an

element such that 𝛼𝑖 > 𝛼 𝑗 for all 𝑗 ≠ 𝑖 , Algorithm 5 fixes 𝛼𝑖 and

redistributes the remaining exterior angle sum 𝜋 −𝛼𝑖 (or 2𝜋 −𝛼𝑖 for
quadrilateral elements) to the other vertices 𝑣 𝑗 proportionally to the

value of 𝛼 𝑗 . If a leading vertex does not exist in a particular element,

then the exterior angle sum 𝜋 (or 2𝜋 for quadrilateral elements) is

instead redistributed to all vertices 𝑣 𝑗 proportionally to the value

of 𝛼 𝑗 . This provides a heuristic choice of conformal structure [𝑔
ref
]

which leads to qualitatively different behavior than the equi-angular

choice described before. An illustration of this can be seen in Fig-

ure 20, where changing the conformal structure corresponding to

𝑔
ref

yields a noticeable change in the results. Unsurprisingly, a more

dilatation-uniform result in this case is obtained by using the con-

formal structure coming from Algorithm 5 which is adapted to the

source surface.

Remark 6.1. Because the target mesh is implicit, the use of a user-

defined reference metric 𝑔
ref

makes the result of Algorithm 1 (and

hence Algorithm 2) somewhat independent of the conformal struc-

ture on the source surface𝑀 ⊂ R3
induced by its embedding. This

is highly useful in many cases; since computational meshes often

contain elements which are nearly degenerate (e.g. Figures 1 and

19), it is desirable to have algorithms which do not depend strongly

on mesh quality. On the other hand, the results of these procedures

will still be influenced by the combinatorics of the original mesh,

since Algorithm 5 still makes use of connectivity information.

Fig. 20. Top two rows: equi-angular conformal structure; original surface
(left), TQCM with normal constraint (middle), TQCM with area constraint
(right). Next two rows: same as above but with conformal structure found
by Algorithm 5. Bottom row: histogram corresponding to top two rows (left),
histogram corresponding to next two rows (right).

This Section is finished with some specific discussion of the

remeshing examples displayed here. Figure 18 illustrates how the

constraints on area and extrinsic geometry from Section 4 can be

used along with the QC Iteration to produce optimal quasiconformal

maps which respect sharp features such as corners in the original

mesh. Notice that there is a trade-off observed between conformal

distortion and geometry preservation; the rounder area-constrained
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mapping has a norm |𝜇 | which is significantly left-shifted compared

to the sharper normal-constrained mapping. Perhaps this is also

related to the fact that minimizing QC𝜇 is equivalent to minimizing

the Dirichlet energyD𝑔 (𝜇) when the area is fixed. A similar compar-

ison is carried out in Figure 19, which represents a more challenging

example for Algorithm 2. Again, the original mesh is greatly im-

proved on average (although not quite dilatation-uniform), and the

constraints have a noticeable effect on the optimal mapping. Inter-

estingly, here the area-constrained mapping is both more heavily

distorted and more dilatation-uniform than its normal-constrained

equivalent. The final remeshing example presented here is Figure 21,

which shows that optimal quasiconformal mappings may or may

not be preferred over least-squares conformal mapping procedures

when high-quality LSCMs can be produced. In this case, a double

torus with constrained area is remeshed using both Algorithm 2

and Algorithm 1 with 𝜇 = 0 (i.e. least-squares conformal mapping).

Notice that the LSCM produces a very low-distortion mapping at

the cost of uniformity in |𝜇 |, while the result of QC Iteration is

highly uniform but more distorted. Therefore, the decision of which

remeshing technique is most advantageous for any given application

is ultimately the choice of the practitioner.

Fig. 21. A comparison of optimal quasiconformal remeshing procedures
when area is constrained. Top row: least-squares conformal mapping (top
right) and QC Iteration (top middle) on a double torus (top left), colored
by |𝜇 | and with respect to the conformal structure given by Algorithm 5.
Bottom row: histogram, plots of 𝜇1 for the surfaces above. Notice that the
LSCM produces less distortion at the cost of uniformity in the mapping.

7 CONCLUSIONS AND FUTURE WORK
A quaternionic representation of quasiconformal mappings whose

domain is an immersed surface in R3
has been introduced, and a

least-squares algorithm for computing these objects has been dis-

cussed. When the Beltrami coefficient 𝜇 is known, this procedure

requires only the solution of a linear system and reconstructs the

quasiconformal mapping which best represents 𝜇 in the homotopy

class of the given initial data. This has enabled a quaternionic ver-

sion of the QC Iteration Algorithm from [Lui et al. 2015, 2014], which

computes optimal Teichmüller mappings in the case of simply con-

nected surfaces and dilatation-uniform quasiconformal mappings

otherwise. The present QC Iteration is applicable to both planar and

non-planar manifold meshes and is amenable to optional constraints

on surface area and extrinsic geometry. Illustrative examples have

demonstrated the utility of these algorithms for object deformation

and surface remeshing applications.

Despite the advances discussed here, there remain several chal-

lenges and avenues for future work in this area. For one, there is still

no satisfactory algorithm for computing Teichmüller extemal map-

pings between Riemann surfaces of arbitrary genus. Since it has been

proven (see [Lui et al. 2015]) that these mappings can be computed

by an iterative procedure such as the QC Iteration in many cases

of interest, it remains important to find a rigourous alternative to

the heuristic Step 3 of this procedure which is guaranteed to always

make progress toward the unique extremal mapping. On the other

hand, it would be even more useful to have a direct, single-stage

minimization algorithm which computes the optimal Teichmüller

mapping given an initial surface, boundary data, and homotopy

class. Finally, it should be mentioned that nearly every treatment

of computational quasiconformal mapping to date relies on solving

a discretized problem which agrees with the smooth theory only

in the limit of mesh refinement. It would be highly interesting to

see progress toward a fully discrete theory for quasiconformality

similar to what is currently being developed for conformality.
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A HARMONIC VS TEICHMÜLLER
This Appendix gives a brief description of the connection between

Teichmüller and harmonic maps which may be useful for under-

standing some results in the body. First, let 𝑓 : 𝑀 → R3
be a

conformal immersion with normal 𝑁 . Then, the area form is the

trace of the metric tensor 𝑓 ∗𝛿 = |𝑑 𝑓 |2, since
𝑁

2

𝑑 𝑓 ∧ 𝑑 𝑓 = −𝑁
2

(𝑑 𝑓 ∗ 𝑑 𝑓 − ∗𝑑 𝑓 𝑑 𝑓 )

= −𝑁
2

(𝑑 𝑓 𝑁𝑑 𝑓 − 𝑁𝑑𝑓 𝑑 𝑓 ) = |𝑑 𝑓 |2 .

On the other hand, the Dirichlet energy with respect to the metric

𝑔 = 𝑓 ∗𝛿 also has the simplified expression,

D𝑔 (𝑓 ) =
1

2

∫
𝑀

𝑑 𝑓 ∧ ∗𝑑 𝑓 =
1

2

∫
𝑀

|𝑑 𝑓 |2 + |∗𝑑 𝑓 |2

=

∫
𝑀

|𝑑 𝑓 |2 = A(𝑓 ),

so that D𝑔 = A when 𝑓 is conformal, and minimizing the Dirichlet

energy is equivalent to minimizing the surface area. More generi-

cally, suppose 𝑓 : 𝑀 → R3
is a mapping which is not conformal,

but there is a conformal structure on 𝑀 specified by some other

reference immersion (say 𝑧) satisfying ∗𝑑𝑧 = 𝑁 𝑑𝑧. In this case,

𝑑 𝑓 = 𝑑 𝑓 + +𝑑 𝑓 − relative to this structure and the area form becomes

𝑁

2

𝑑 𝑓 ∧ 𝑑 𝑓 = −𝑁
2

(𝑑 𝑓 + ∧ 𝑑 𝑓 + + 𝑑 𝑓 − ∧ 𝑑 𝑓 − + 𝑑 𝑓 + ∧ 𝑑 𝑓 − + 𝑑 𝑓 − ∧ 𝑑 𝑓 +)

= |𝑑 𝑓 + |2 − |𝑑 𝑓 − |2 ,
where it was used that

𝑑 𝑓 + ∧ 𝑑 𝑓 − = −𝑑 𝑓 − ∧ 𝑑 𝑓 + = 𝑑 𝑓 + ∗ 𝑑 𝑓 − − ∗𝑑 𝑓 +𝑑 𝑓 − = 0.

In this case, the Dirichlet energy is

D𝑔 (𝑓 ) =
1

2

∫
𝑀

𝑑 𝑓 ∧ ∗𝑑 𝑓 =

∫
𝑀

|𝑑 𝑓 + |2 + |𝑑 𝑓 − |2 ,

which follows because

𝑑 𝑓 − ∧ ∗𝑑 𝑓 + = 𝑑 𝑓 + ∧ ∗𝑑 𝑓 − = 0.

This gives a more general decomposition

D𝑔 (𝑓 ) =
∫
𝑀

|𝑑 𝑓 + |2 − |𝑑 𝑓 − |2 + 2

∫
𝑀

|𝑑 𝑓 − |2 = A(𝑓 ) + 2CD(𝑓 ),

where A is signed area and CD is conformal distortion. Note that

D𝑔 depends only on the metric 𝛿 of R3
and the conformal class of

𝑔, and that 𝑓 is conformal if and only if CD(𝑓 ) = 0, in which case

this expression reduces to the one above. Moreover, when the target

of 𝑓 is fixed, the area term does not vary and so the minimizers of

CD and D𝑔 are identical. This implies that any conformal map is

also harmonic, which has proven to be quite useful for computing

minimal surfaces and least-squares conformal mappings (see e.g.

[Gruber and Aulisa 2020; Lévy et al. 2002; Pinkall and Polthier 1993]).

It turns out that a similar decomposition is quite useful for under-

standing Teichmüller quasiconformal mappings. Write 𝑔 = 𝜎 |𝑑𝑧 |2
for some local conformal coordinate 𝑧 : 𝑈 ⊂ 𝑀 → C and recall that

the quasiconformal distortion of the mapping 𝑓 : 𝑀 → R3
with

Beltrami coefficient 𝜇 : 𝑇𝑀 → (𝑇𝑀)⊥ (c.f. Definition 3.3) is

4QC𝜇 (ℎ) B 2

∫
𝑀

|𝑑ℎ− − 𝜇 𝑑ℎ+ |2 𝑑𝑆𝑔

=

∫
𝑈

1

𝜎
|h𝑧 − 𝜇 h𝑧 |2 𝜎 𝑖𝑑𝑧 ∧ 𝑑𝑧 =

∫
𝑈

|h𝑧 − 𝜇 h𝑧 |2 𝑖𝑑𝑧 ∧ 𝑑𝑧,

where we have abused notation by equating the global object QC𝜇
with its representation on𝑈 . Since QC𝜇 measures deviation from

quasiconformality, it is natural to wonder if it appears as the con-

formal part of some Dirichlet energy functional. To examine this,

recall that any mapping 𝑓 : (𝑀,𝑔) → 𝑓 (𝑀) ⊂ (R3, 𝛿) which is qua-

siconformal with respect to 𝜇 induces a new metric on𝑀 , expressed

locally as 𝑔(𝜇) B 𝑓 ∗𝛿 = 𝜌 |𝑑𝜁 |2, where 𝜌 = |f𝑧 |2 and 𝑑𝜁 = 𝑑𝑧 + 𝜇 𝑑𝑧.
This is simply the image metric expressed on the source surface𝑀 ,
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which is not conformal to 𝑔 unless 𝜇 ≡ 0. There is then the usual

notion of Dirichlet energy with respect to 𝑔(𝜇), expressed locally as

2D𝑔 (𝜇) (𝑓 ) =
∫
𝑀

|𝑑 𝑓 |2 𝑑𝑆𝑔 (𝜇) =
∫
𝑈

1

𝜌

(��f𝜁 ��2 + ���f ¯𝜁

���2) 𝜌 𝑖𝑑𝜁 ∧ 𝑑 ¯𝜁

=

∫
𝑈

(��f𝜁 ��2 + ���f ¯𝜁

���2) 𝑖𝑑𝜁 ∧ 𝑑 ¯𝜁 ,

which depends on the metric 𝛿 and the conformal class of 𝑔(𝜇).
The next result (essentially due to [Lui et al. 2015, Lemma 3.3])

establishes a decomposition similar to that discussed earlier, which

connects the critical points of D𝑔 (𝜇) to those of QC𝜇 in the case

that 𝜇 has constant norm.

Theorem A.1. Let 𝜇 : 𝑇𝑀 → 𝑇𝑀 be a Beltrami differential
with constant norm |𝜇 | < 1 corresponding to a quasiconformal map
𝑓 : 𝑀 → 𝑓 (𝑀) ⊂ R3. Then, the Dirichlet energy D𝑔 (𝜇) (ℎ) of any
mapping ℎ : 𝑀 → R3 decomposes as

D𝑔 (𝜇) (ℎ) =
2

1 − |𝜇 |2
QC𝜇 (ℎ) + A(ℎ).

In particular, when the area of the image is fixed, quasiconformal
maps with BC 𝜇 are also harmonic with respect to the metric 𝑔(𝜇).

Proof. Consider local coordinates 𝑧, 𝜁 as above so that𝑔 = 𝜎 |𝑑𝑧 |2,
𝑔(𝜇) = 𝜌 |𝑑𝜁 |2 = |f𝑧 |2 |𝑑𝑧 + 𝜇 𝑑𝑧 |2. A straightforward computation

establishes the Jacobian determinants

𝑖𝑑𝜁 ∧ 𝑑 ¯𝜁 =

(
|𝜻𝑧 |2 − |𝜻𝑧 |2

)
𝑖𝑑𝑧 ∧ 𝑑𝑧 =

(
1 − |𝜇 |2

)
𝑖𝑑𝑧 ∧ 𝑑𝑧,

𝑑ℎ ∧ 𝑑 ¯ℎ =

(��h𝜁 ��2 − ���h ¯𝜁

���2) 𝑖𝑑𝜁 ∧ 𝑑 ¯𝜁 ,

and using the representations of 𝑑𝜁 , 𝑑 ¯𝜁 in terms of 𝑑𝑧, 𝑑𝑧 leads to

the partial derivatives

h𝜁 =
1

1 − |𝜇 |2
(h𝑧 − 𝜇 h𝑧) , h ¯𝜁 =

1

1 − |𝜇 |2
(h𝑧 − 𝜇 h𝑧) .

Therefore, when 𝜇 has constant norm, the energy D𝑔 (𝜇) may be

expressed as

2D𝑔 (𝜇) (ℎ) =
∫
𝑈

2

���h ¯𝜁

���2 𝑖𝑑𝜁 ∧ 𝑑 ¯𝜁 +
∫
𝑈

(��h𝜁 ��2 − ���h ¯𝜁

���2) 𝑖𝑑𝜁 ∧ 𝑑 ¯𝜁

=
2

1 − |𝜇 |2

∫
𝑈

|h𝑧 − 𝜇 h𝑧 |2 𝑖𝑑𝑧 ∧ 𝑑𝑧 +
∫
𝑈

𝑑ℎ ∧ 𝑑 ¯ℎ

=
4

1 − |𝜇 |2
QC𝜇 (ℎ) + 2A(ℎ),

where A(ℎ) is the signed area of the image surface, counted with

multiplicity. Therefore, when this area is fixedD𝑔 (𝜇) and QC𝜇 have
the same set of critical points. □

Since Teichmüller mappings are unique when they exist and cor-

respond to Beltrami coefficients with constant norm, Theorem A.1

implies that any homotopy class of maps from𝑀 into a fixed target

which contains a Teichmüller extremum corresponding to the BC 𝜇∗

also contains a unique harmonic map with respect to the conformal

class of 𝑔(𝜇∗), and that these maps actually coincide. Conversely,

in this case it follows that minimizing QC𝜇 for a constant-norm

𝜇 is equivalent to minimizing the Dirichlet energy D𝑔 (𝜇) . These
facts are what underlie the QC Iteration algorithm, and may explain

why the mappings with fixed area computed through this process

generally have more optimal distortion profiles (see e.g. Figures 1,

18, and 19).

B THEORY OF QC ITERATION
This Appendix recalls some theory from [Lui et al. 2015] which is

useful for understanding the QC Iteration algorithm. Precisely, the

QC Iteration involves an energy functional on the space of Beltrami

differentials 𝜇 associated to quasiconformal mappings 𝑓 : 𝑀 → 𝑃

between fixed Riemann surfaces, denoted B(𝑀, 𝑃). To describe this

object, first recall that a local conformal coordinate 𝑧 : 𝑈 ⊂ 𝑀 → C
on the Riemann surface (𝑀, 𝐽 ) gives rise to a conformal class of

Riemannian metrics [𝑔] = {𝑔𝜎 = 𝜎 |𝑑𝑧 |2 | 𝜎 : 𝑈 → R+} compatible

with 𝐽 , and that any quasiconformal mapping 𝑓 : (𝑀,𝑔) → (𝑃,ℎ)
(ℎ a metric compatible with the complex structure on 𝑃 ) with BC 𝜇

gives rise to a similar conformal class [𝑔(𝜇)] containing 𝜎-multiples

of the canonical representative 𝑔(𝜇) = |𝑑𝑧 + 𝜇𝑑𝑧 |2. Under certain
assumptions including compact 𝑃 with nonpositive Gaussian curva-

ture (see e.g. [Eells and Sampson 1964, Section 11]), it follows that

there is a unique harmonic mapping 𝑓 ∗ : (𝑀,𝑔(𝜇)) → (𝑃, ℎ) in the

homotopy class [𝑓 ] which depends only on the metric ℎ and the

conformal class of 𝑔(𝜇).
This suggests a definition for the Beltrami energy of the BC 𝜇,

E(𝜇) := D𝑔 (𝜇) (𝑓 ∗) =
1

2

∫
𝑀

��𝑑 𝑓 ∗��2
ℎ
𝑑𝑆𝑔 (𝜇) ,

where 𝑓 ∗ = 𝑓 ∗ (𝜇, ℎ), 𝑑𝑆𝑔 (𝜇) and D𝑔 (𝜇) denote respectively the area

element and Dirichlet energy with respect to the metric 𝑔(𝜇), and
|·|ℎ denotes the norm with respect to the metric ℎ. Under assump-

tions such as those of Theorem 2.2, it can be shown (see [Lui et al.

2015, Theorem 3.2]) that E has a unique global minimizer in each

“conformal class” of Beltrami differentials [𝜇], where 𝜇 ′ ∼ 𝜇 if there
is a biholomorphism (𝑀,𝑔(𝜇 ′)) ↦→ (𝑀,𝑔(𝜇)) homotopic to the iden-

tity map. Therefore, when a unique Teichmüller map 𝑓 ∗∗ : 𝑀 → 𝑃

exists for some [𝑓 ], the Beltrami energy E has a global minimizer

which is precisely the associated BC 𝜇∗∗. Moreover, it follows that

𝑓 ∗∗ : (𝑀,𝑔(𝜇∗∗)) → (𝑃, ℎ) is a conformal mapping.

With this, the QC Iteration can be understood as an iterative

procedure which computes the Teichmüller mapping 𝑓 ∗∗ ∈ [𝑓 ] by
following a sequence of Beltrami differentials {𝜇∗} corresponding
to unique harmonic maps 𝑓 ∗ : (𝑀,𝑔(𝜇)) → (𝑃, ℎ). Ideally, the
minimum should be produced by performing gradient descent on

E, although this is generally difficult. Instead, the authors of [Lui

et al. 2014] formulate the heuristic Step 3 discussed at length in

Section 5.3 which often (but not always) decreases the Beltrami

energy. It would be interesting to find a rigorous way to ensure

that the motion of 𝜇 is not orthogonal to ∇E, so that the desired

extremal mapping is better approximated in all cases of interest.

C PROOF OF LEMMA 2.4
Recall that in the local conformal coordinate 𝑧 : 𝑈 ⊂ 𝑀 → C the

Teichmüller Beltrami coefficient satisfies

𝜇 = 𝑘
𝑞

|𝑞 | ,

where 𝑘 ∈ R and 𝑞 : 𝑈 → C is a local holomorphic function. It

follows immediately that the norm is constant, hence harmonic.
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Moreover, since 𝑞 is holomorphic, so is log𝑞 = log |𝑞 | + 𝑖 arg𝑞 (in

an appropriate branch) and it follows that arg𝑞 is harmonic. Finally,

we have the phase equality

𝑒𝑖 arg 𝜇 =
𝑞

|𝑞 | ,

so that arg 𝜇 = −arg𝑞, which implies the first conclusion. Con-

versely, if 𝜃 : 𝑈 → R is a harmonic function, then there is a conju-

gate harmonic function 𝜙 so that 𝜙 − 𝑖𝜃 is holomorphic. In this case,

𝑞 = 𝑒𝜙−𝑖𝜃 is also holomorphic and

𝜇 = |𝜇 | 𝑒𝑖𝜃 = 𝑘
𝑞

|𝑞 |
is Teichmüller.

Fig. 22. Quantitative plots corresponding to a representative cross-section
of experiments from the body. The left column displays |𝜇 |∞ along with
|𝜇 |

avg
at the end of each iteration, which ideally become near-equal. The

right column displays the quasiconformal distortion QC𝜇 (𝑓 ) at the end of
each iteration; note that the line search in Section 5.4 forces this quantity
to be nonincreasing.

D DEPENDENCE ON DISCRETIZATION AND
CONSTRAINTS

This Appendix takes a deeper look into the discretization- and

constraint- dependence of Algorithms 1 and 2. Given prescribed

Dirichlet boundary data, Figure 23 displays the result of computing

an extremal Teichmüller mapping from a square discretized three

different ways to the corresponding planar domain realizing this

boundary. In all cases, the mappings are computed with respect to

an ideal equi-angular conformal structure on the domain, so that

both quad meshes produce the same mapping as their combinatorics

are identical. On the other hand, the triangular mesh produces a

mapping which is essentially different from the others; a pole ap-

pears in the lower-left corner of the domain which is not present in

the quad-meshed cases. Note that all mappings have highly uniform

conformality distortion, although the distortion of the triangular

domain is slightly higher.

Fig. 23. A comparison between the Teichmüller maps generated by Algo-
rithm 2 for three different discretizations of the square domain for the same
boundary data, colored by |𝜇 | in the left and middle columns and by 𝜇1 in
the right column. Note that all are mappings are computed with respect to
an equi-angular conformal structure on the domain. As a consequence, the
middle and right mappings are identical.

The results of a similar experiment carried out for a non-planar

case are given in Figure 24. Here, the cylindrical domain from Fig-

ure 5 is sheared according to a closed curve on the surface and

discretized accordingly, so that its inherited conformal structure is

different from the meshing with regular squares. In this case, Algo-

rithm 5 produces different reference conformal structures based on

these discretizations, which leads to different mappings computed

by Algorithm 2 to the surface with prescribed boundary data. Notice

that aspects such as the location of the zero and pole of the associ-

ated quadratic differential are dependent on this discretization, since

they depend on the conformal structure of the domain. Similarly,

the optimal distortion |𝜇 | is different as well.
In addition to the pictorial information seen thusfar, Figure 22

displays plots of various quantities corresponding to a representa-

tive cross-section of experiments from the body. Particularly, the

average and maximum norms of the BC 𝜇 are displayed at each iter-

ation, which should tend to each other in the case that a Teichmüller

mapping is arbitrarily approximated by Algorithm 2. Moreover, the

quasiconformal distortion QC𝜇𝑘+1 (𝑓𝑘 ) at the end of each iteration

is also reported, to give an idea of its decrease and eventual plateau.

The first row of Figure 22 compares the mappings involving the reg-

ular quad mesh of the square and the triangular mesh from Figure 23,

row 2 compares the mappings from Figure 24, row 3 compares the

mappings from Figure 16, row 4 compares the mapping from Fig-

ure 6 computed using the normal constraint from Section 4.1 to

another mapping (not pictured) computed using the area constraint
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Fig. 24. A comparison of the extremal mappings generated by Algorithm 2
for two different discretizations of the round cylinder with reference con-
formal structures computed by Algorithm 5. Note the different locations of
the discontinuities in 𝜇.

Section 4.2, rows 5 and 6 compare the mappings from 20, and row

7 compares the optimal quasiconformal mapping from Figure 21

computed using the area constraint to another mapping (not pic-

tured) computed using the normal constraint. Notice that the QC

Iteration Algorithm 2 finds optimal Teichmüller mappings with

varying success; extremal mappings involving genus zero surfaces

with boundary are very well approximated, while remeshings such

as that displayed in Figure 20 remain relatively far from the Teich-

müller criterion. This could be due in large part to the lack of an

appropriate conformal structure on the domain, as suggested by the

smaller difference between the maximum and average values of |𝜇 |
when the conformal structure is pre-computed through Algorithm 5.

It is further remarkable that in a typical instance of remeshing with

Algorithm 2 there are often only a handful elements which realize

the maximum conformality distortion, with the rest lying close to

the average.
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