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Abstract. The metriplectic formalism is useful for describing complete dynamical systems which conserve

energy and produce entropy. This creates challenges for model reduction, as the elimination of high-frequency

information will generally not preserve the metriplectic structure which governs long-term stability of the
system. Based on proper orthogonal decomposition, a provably convergent metriplectic reduced-order model

is formulated which is guaranteed to maintain the algebraic structure necessary for energy conservation and

entropy formation. Numerical results on benchmark problems show that the proposed method is remarkably
stable, leading to improved accuracy over long time scales at a moderate increase in cost over naive methods.
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1. Introduction

Metriplectic dynamical systems offer a prototypical example of how the algebraic structure internal to
a system can govern the behavior of its observable quantities. Also referred to as GENERIC systems (see
[1]), metriplectic dynamics are produced through a combination of reversible and irreversible contributions
whose constituent parts are a noncanonical Poisson structure and a degenerate Riemannian metric structure,
respectively. Mathematically, these structures are reflected by algebraic brackets which formally separate the
dynamics into terms that are “energy-preserving” and terms that are “dissipative” (see Section 1.1). Com-
bined with appropriate compatibility (or degeneracy) conditions, this seemingly simple idea is geometrically
rich and encodes a strong form of the first and second laws of thermodynamics, making it powerful enough to
represent many physical systems of interest (see Section 1.2). On the other hand, standard computationally
efficient reduced-order models (ROMs) for these systems based on purely statistical considerations will not
generally preserve the rich structure afforded by the metriplectic formalism, which can lead to unreasonable
or unrealistic results in real-time use cases (see e.g. Section 5). To elucidate the benefits of metriplectic
structure-preservation in the context of model reduction, a genuinely metriplectic ROM based on proper
orthogonal decomposition (POD) is proposed in Theorem 3.4 which is shown in Theorem 4.2 to converge
to the true solution as the reduced dimension increases. The remainder of the manuscript is dedicated to a
detailed description of this ROM along with an evaluation of its performance on benchmark examples.

1.1. Overview. It is first useful to recall metriplectic systems in more detail. The generator for metriplectic
dynamics is a notion of free energy F = E+S described by functions E,S : P → R (representing energy and
entropy, respectively) which are defined on some phase space P that may be finite or infinite dimensional.
In this case, any observable quantity O : P →M ⊂ RN (for some N) evolves as

Ȯ = {O, F}+ [O, F ] = {O, E}+ [O, S] ,

where {·, ·} is a noncanonical Poisson bracket on P capturing the reversible dynamics and [·, ·] is a degenerate
metric bracket on P capturing the irreversible dynamics. Metriplectic structure is enforced by the implicit
degeneracy conditions {S, ·} = [E, ·] = 0, which guarantee an analogue of energy conservation and entropy
production. To describe this more precisely, recall that the Poisson structure {·, ·} is a Lie algebra realization
on functions and so is bilinear and skew-symmetric (SS), while the degenerate metric structure [·, ·] is
chosen to be bilinear and symmetric positive semi-definite (SPSD). This allows for concrete expression of
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the reversible and irreversible brackets as

{O, E} = ∇O · L∇E,

[O, S] = ∇O ·M∇S,
where · represents a choice of inner product on P, ∇ denotes the gradient with respect to · defined through
dF (v) = ∇F · v, and L,M : P → P are SS resp. SPSD linear operators which may depend on the state x.
Here again no distinction is made between finite and infinite dimensional systems, as this affects only the
choice of inner product ·. In many cases of interest the observable O (x) = x is simply the identity, so that
the system above further simplifies to the standard equations for metriplectic dynamics [2, 1],

(1) ẋ = {x, E}+ [x, S] = L∇E +M∇S,
which in view of the compatibility conditions

(2) L∇S = M∇E = 0,

preserve a strong form of the first and second thermodynamical laws. In particular, since L⊺ = −L,
Ė = ẋ · ∇E = L∇E · ∇E +M∇S · ∇E = ∇S ·M∇E = 0,

so that the energy E is conserved along the evolution. Similarly, the fact that M⊺ = M is SPSD implies the
relationship

Ṡ = ẋ · ∇S = L∇E · ∇S +M∇S · ∇S = −∇E · L∇S +M∇S · ∇S = |∇S|2M ≥ 0,

so that the entropy S is nondecreasing. Here it becomes clear that asymptotic stability is built-in to the
metriplectic framework, as choosing −S as a Lyapunov function shows that solutions to (1) will naturally
relax to the state ∇F = 0. Moreover, this gives a degree of freedom in describing a physical system with
metriplectic structure, as S can be chosen judiciously from the Casimirs of the Poisson bracket i.e. those
functions which annihilate it. Geometrically, it is interesting to observe that the motion of x is everywhere
tangent to the level curves of E and transverse to those of S, which is reflective of the fact that metriplectic
dynamics are a combination of Hamiltonian and generalized gradient flows. When M = 0, E = H is the
Hamiltonian function, and L = J is a square root of −I (note the freedom in sign), (1) reduces to Hamilton’s
equations of motion ẋ = {x, H} = J∇H. Similarly, when L = 0 and S = −G for some G : P → R, (1)
reduces to a generalized gradient flow ẋ = − [x, G] = −M∇G.

1.2. Related Work. The metriplectic/GENERIC forms of many physical systems have already been pro-
posed and studied theoretically for some time. The compressible Navier-Stokes equations were seen to be
metriplectic in [2], and general complex fluids were incorporated into the formalism in [3]. This paved the
way for the inclusion of other physical phenomena such as those based on Korteweg-type fluids [4] and
the Smoluchowski equation for colloidal suspensions [5]. Moreover, a constrained GENERIC rheological
model for polymer solutions was developed in [6] and shown to be effective in predicting steady shear vis-
cosity, while a formulation of dissipative magnetohydrodynamics was discovered in [7] and used in studying
two-dimensional incompressible plasma flow. Beyond fluids, metriplectic structure has also been useful in
describing mechanical systems such as three-dimensional rigid body dynamics [8], Hamiltonian systems with
friction [9], a Vlasov-Fokker-Planck equation [10], and others based on large deviation principles in physics.

There have been far fewer works addressing the computational aspects of metriplectic systems, though
some noteworthy progress has been made. Structure preserving numerical methods for finite strain ther-
moelastodynamics in GENERIC form are discussed in [11], where so-called Energy-Momentum-Entropy
consistent schemes are shown to increase stability of the discrete system. A compatible discretization for
GENERIC problems using finite elements in space and a monolithic integrator in time was developed in
[12] and applied to nonlinear problems in thermoelasticity, again demonstating improved stability proper-
ties. There is also a promising line of research into metriplectic integrators using neural network technology,
which has produced works such as [13, 14].

From the perspective of model reduction, it has long been recognized that computational models perform
better when informed by the algebraic structure of the systems that they are modeling. This remains true for
low-dimensional approximation, where the model being approximated is itself a surrogate for some physical
phenomena. This has produced an entire subfield of structure-preserving model reduction, whose goal is to
design effective low-fidelity surrogates which preserves desired properties of the high-fidelity model under
consideration. The relative ubiquity and rich mathematical structure of Hamiltonian systems has inspired
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several works on Hamiltonian structure-preserving ROM [15, 16, 17, 18, 19], as well as numerous extensions
to the port-Hamiltonian formalism [20, 21, 22, 23, 24] which is a useful generalization of its namesake where
the Hamiltonian structure on the interior is allowed to interface with general “ports” on the boundary.

Remark 1.1. In fact, the system (1) can be embedded into the port-Hamiltonian formalism,

ẋ = (J−R)∇H(x) +Bu(t),

y = B⊺∇H(x),

where J is SS and R is SPSD. In particular, decompose M = CDC⊺. Then, choosing R = 0, J = L
B = C,u = −Dy, and H = E − S the exegy function of the system, it follows that

ẋ = L (∇E −∇S)−CDC⊺ (∇E −∇S) = L∇E +M∇S,
since L∇S = M∇E = 0. On the other hand, none of the port-Hamiltonian ROM work known to the authors
can guarantee preservation of the degeneracy conditions (2) necessary for metriplectic structure.

Apart from Hamiltonian systems and their extensions, significant work involving structure-preserving
ROM has also been done on topics such as moment-preserving Krylov subspace projection [25] and La-
grangian variational problems [26]. An interpolatory model reduction strategy preserving symmetry, higher
order structure, and state constraints is discussed in [27], and a ROM for damped wave propagation in
transport networks is developed in [28]. It is remarkable that the strategy in [28] is similar to ours in that
the preservation of algebraic compatibility conditions at the reduced level assures desired properties such as
conservation of mass, dissipation of energy, passivity, and existence of steady states at the full resolution.

2. Preliminaries

To describe the present method for metriplectic model reduction, it is useful to review some basics of
POD-based ROMs. First, recall that the goal is to study systems which conserve some notion of energy E,
so it is beneficial to express any approximation x̃ ≈ x ∈ RN to the full-order state as a perturbation from
some reference configuration x0 ∈ RN , i.e. x̃ = x0 +Ux̂ where x̂ ∈ Rn and U : Rn → RN . This ensures the
true value of E is exactly preserved at least at the point where x̂ = 0, which serves as the initial condition
for the reduced-order system.

Consider the standard POD-ROM procedure with this in mind. Let x ∈ RN be a semi-discrete object
representing the solution to a system of N ∈ R ODEs, and let Y ∈ RN×nt be a matrix with rank r ≤
min{N,nt} containing snapshots of the high-fidelity solution w = x−x0 at nt discrete points in the interval

[0, T ] where T ∈ R represents the final simulation time. If Y = ŨΣV⊺ is the singular value decomposition,

standard computations show that the matrix U ∈ RN×n comprised of the first n < r columns of Ũ minimizes
the L2 ([0, T ]) reconstruction error of w, and that this error is precisely the sum of the remaining squared
singular values [29]. More precisely, it follows that

∥w −UU⊺w∥2 :=

∫ T

0

|w −UU⊺w|2 dt =
r∑

i=n+1

σ2
i ,

where σi is the ith singular value of Y. This is the basis for the standard POD-ROM procedure, which is
applied to the system governing x by making the approximation x̃ = x0 +Ux̂ and using that U⊺U = I in
Rn. In the case of the metriplectic system (1), this yields the reduced-order model

(3) ˙̂x = U⊺L(x̃)∇E(x̃) +U⊺M(x̃)∇S(x̃),
which is the system of n scalar ODEs that best approximates the FOM (1) in the above sense, but clearly
does not preserve the compatibility conditions (2) necessary for metriplectic structure. As will be seen in
the numerical experiments (see Section 5), this creates instability which can lead to unphysical blow-up of
the solution in time.

Remark 2.1. For notational convenience, dependence on the states x, x̃, x̂ is suppressed when the context
is clear. Similarly, the Einstein summation convention is adopted so that any tensor index appearing both
up and down in an expression is summed over its appropriate range.
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As a first attempt at remedying this, it is reasonable to consider searching for mappings L̂, M̂ depending
only on x̂ such that

(4) U⊺L = L̂U⊺, U⊺M = M̂U⊺.

This would convert (3) into the best possible ROM,

˙̂x = U⊺L(x̃)∇E(x̃) +U⊺M(x̃)∇S(x̃) = L̂(x̂)∇Ê (x̂) + M̂(x̂)∇Ŝ (x̂) ,

where we have introduced the notation

F̂ = F ◦ x̃, ∇F̂ = x̃′ · ∇F = U⊺∇F.
Note that the compatibility conditions (2) are automatically satisfied in this case, as L̂∇Ŝ = L̂U⊺∇S =

U⊺L∇S = 0 and similarly for M̂∇Ê. On the other hand, (4) is an overdetermined system of equations
when N > n, and solving the normal equations gives only the system

(5) x̂ = L̂∇Ê + M̂∇Ŝ, L̂ = U⊺LU, M̂ = U⊺MU.

which has the advantage of informing the low-dimensional system with the symmetry relationships L̂⊺ = −L̂
and M̂⊺ = M̂, but still cannot guarantee metriplectic structure preservation. Since UU⊺ ̸= I, this gives only

L̂∇Ŝ = U⊺LUU⊺∇S ̸= 0,

M̂∇Ê = U⊺MUU⊺∇E ̸= 0,

so that the first and second laws of thermodynamics remain violated. Note that in the case L = 0 or
M = 0, the conditions (2) are vacuous and (5) provides a useful reduced order model which preserves some
structure present in the original system. In fact, this ROM in the case M = 0 is precisely the Hamitonian
structure-preserving ROM proposed in [16].

2.1. Metriplectic Structure Preservation. One way to preserve metriplectic structure is to incorporate
the compatibility conditions (2) explicitly. Let ek denote the kth standard basis vector in RN and denote
∇F = F kek where F k = ek · ∇F = ∂F/∂xk. Consider solving the underdetermined equations (for each
1 ≤ i, j ≤ N)

Lij = ξijkS
k,

Mij = ζikjlE
kEl,

(6)

for tensors ξ, ζ in
(
RN

)⊗3
,
(
RN

)⊗4
respectively which may depend on the state x and which satisfy the

symmetry relations

ξijk = −ξjik = −ξikj ,
ζikjl = −ζkijl = −ζiklj = ζjlik.

(7)

This is always possible as long as ∇E,∇S are nonzero for all x (c.f. Proposition 3.1), and otherwise
the metriplectic structure is degenerate. Notice that (7) is simply the coordinate-wise expression of total
antisymmetry in ξ as well as symmetric 12−34 pairwise antisymmetry in ζ. The advantage of this approach
is that the degeneracy conditions now follow immediately from the symmetries (7). Identifying RN with its
dual to make use of the canonical “index-raising” isomorphism, for any 1 ≤ i ≤ N it follows that

(L∇S)i = ξijkS
kSj = ξikjS

jSk = −ξijkSjSk = 0,

(M∇E)
i
= ζikjlE

kElEj = −ζikjlEkElEj = 0,

since in either case there is a contraction of the same vector over an antisymmetric pair of indices. Therefore,

if reduced-order objects ξ̂, ζ̂ which preserve (7) can be found, the degeneracy conditions (2) will hold by
construction.

To that end, notice that (1) and (3) can be rewritten respectively as

ẋ = ξ (∇S)∇E + ζ (∇E,∇E)∇S,
˙̂x = U⊺ξ (∇S)∇E +U⊺ζ (∇E,∇E)∇S,
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where the tensors ξ, ζ are written suggestively to indicate their role as matrix-valued mappings. This
encourages the search for reduced-order matrices

L̂ = ξ̂
(
∇Ŝ

)
M̂ = ζ̂

(
∇Ê,∇Ê

)
,

defined in terms of reduced tensors ξ̂, ζ̂ which satisfy

U⊺ξ = ξ̂ (U⊺)U⊺,

U⊺ζ = ζ̂ (U⊺,U⊺)U⊺.
(8)

This is generally impossible when N > n for the same reason as before, but (8) can again be interpreted

as normal equations whose solutions yield ξ̂ = U⊺ξ (U)U and ζ̂ = U⊺ζ (U,U)U. It is straightforward to

check that ξ̂, ζ̂ computed this way satisfy the necessary symmetries (7), in which case the ROM

(9) ˙̂x =
{
x̂,∇Ê (x̂)

}
+
[
x̂,∇Ŝ (x̂)

]
:= L̂(x̃)∇Ê (x̂) + M̂(x̃)∇Ŝ (x̂) ,

will preserve the original metriplectic structure by construction. Suppressing dependence on the state, it
follows from symmetry considerations as before that

L̂∇Ŝ = ξ̂
(
∇Ŝ

)
∇Ŝ = 0,

M̂∇Ê = ζ̂
(
∇Ê,∇Ê

)
∇Ê = 0,

so that the first and second laws of thermodynamics become

˙̂
E = ˙̂x · ∇Ê = L̂∇Ê · ∇Ê +∇Ŝ · M̂∇Ê = 0,

˙̂
S = ˙̂x · ∇Ŝ = −∇Ê · L̂∇Ŝ + M̂∇Ŝ · ∇Ŝ =

∣∣∣∇Ŝ∣∣∣2
M̂
≥ 0,

as desired.

Remark 2.2. It should be mentioned that the “metriplectic-preserving” moniker used to describe (9) is a

slight abuse of terminology in the case L = L(x), as the reduced Poisson bracket {·, ·} generated by ξ̂ = ξ̂(x)
is not guaranteed to satisfy the Jacobi identity for arbitrary F,G,H : Rn → R,

{F, {G,H}}+ {G, {H,F}}+ {H, {F,G}} = 0.

In fact, a direct calculation shows that the above Jacobi identity is equivalent to the statement (sum on l)

L̂ilL̂jk,l + L̂jlL̂ki,l + L̂klL̂ij,l = 0, 1 ≤ i, j, k ≤ n,

which may not vanish if L(x) is state-dependent. Conversely, the same calculation shows that the ROM (9)
is truly metriplectic outside of this case, since the terms involving second derivatives cancel solely due to
symmetry properties.

3. Computing the Metriplectic ROM

To make use of the metriplectic ROM (9), it is necessary to have a reasonable way to compute ξ, ζ and

their reduced-order counterparts ξ̂, ζ̂. Note that it is prohibitively expensive to compute general 3rd and
4th-order tensors online even for moderately large N , as the number of tensor entries is exponential in the
degree. Therefore, it is necessary to find an efficient way to express (9) which does not require the explicit
construction of these tensors. To that end, recall that M is SPSD and so has the eigenvalue decomposition

M =

r∑
α=1

λα mα ⊗mα,

where 1 ≤ r ≤ N and all λα > 0 are positive. If it is possible to write mα = Aα∇E for some SS matrices
Aα, the tensor

ζ =

r∑
α=1

λα Aα ⊗Aα,
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would satisfy the desired conditions (6) and (7). The next result shows that this can always be done for
metriplectic systems.

Proposition 3.1. Let k0, k1 be indices such that Ek0 ̸= 0 and Sk1 ̸= 0. Suppose M =
∑

α λα mα ⊗mα

and B,C are tensors such that Bα
ik0

= vαi /E
k0 , Cijk1

= Lij/S
k1 , and Bα

ik = Cijk = 0 otherwise. Then, the
tensors ξ and ζ =

∑
α λα Aα ⊗Aα with components

ξijk =
1

2
(Cijk + Cjki + Ckij − Cjik − Ckji − Cikj) ,

Aα
ik = Bα

ik −Bα
ki,

satisfy (6) and (7).

Proof. This is a direct consequence of the compatibility conditions L∇S = M∇E = 0. More precisely, Let
B,C be as in the statement of the Proposition. First, recall that all eigenvectors mα of M are linearly
independent with positive eigenvalues λα > 0. The compatibility condition M∇E = 0 then becomes

M∇E =

r∑
α=1

λα (mα · ∇E)mα = 0,

so it follows that mα ·∇E = 0 for all 1 ≤ α ≤ r. Using [F ] to denote the indicator function of the statement
F , the definition of A then implies that for all α, i,

Aα
ikE

k = (Bα
ik −Bα

ki)E
k = mα

i − [i = k0]B
α
kiE

k = mα
i − [i = k0]

mα · ∇E
Ek0

= mα
i ,

which establishes that Aα∇E = mα for all α. It follows that for all 1 ≤ i, j ≤ N ,

ζikjlE
kEl =

r∑
α=1

λαA
α
ikA

α
jlE

kEl =

r∑
α=1

λαm
α
i m

α
j = Mij ,

which establishes the second part of (6). The corresponding symmetry relationship in (7) follows immediately
from the skew-symmetry of Aα and the definition of ζ as a sum of symmetric products. Moving to the case
of ξ, it is straightforward to compute

2ξijkE
k = (Cijk + Cjki + Ckij − Cjik − Ckji − Cikj)S

k

= (Lij − Lji) + [i = k1] (Cjki − Ckji)S
k + [j = k1] (Ckij − Cikj)S

k

= 2

(
Lij + [i = k1]

(L∇S)j
Sk1

− [j = k1]
(L∇S)i
Sk1

)
= 2Lij ,

which follows since L∇S = 0. This establishes (6), and the antisymmetry condition (7) is immediate since
ξ is a multiple of the antisymmetrization of C. □

Remark 3.1. It is interesting to note that a weaker form of Proposition 3.1 remains true in the general case
of any 4-tensor ζ satisfying the symmetries (7). In particular, it follows that ζ decomposes as the sum of at
most N2 outer products with antisymmetric factors. This is a consequence of a simple reshaping argument:
Consider the column-wise unfolding of ζ, denoted ζ̄ and defined componentwise as

ζ̄(k−1)N+i,(l−1)N+j = ζikjl,

which is an N2 × N2 matrix that is symmetric by the 12-34 interchange symmetry of ζ. Its spectral
decomposition is

ζ̄ =

s∑
α=1

µα wα ⊗wα,

where 1 ≤ s ≤ N2 and wα ·wβ = δαβ . So, if Aα is the folding of wα for all 1 ≤ α ≤ s (i.e. Aα
ij = wα

(j−1)N+i

for all 1 ≤ i, j ≤ N), it follows that Aα : Aβ = δαβ , each Aα is skew-symmetric, and

ζ =

s∑
α=1

µα Aα ⊗Aα.
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Proposition 3.1 is constructive and could be used as a recipe for computing the tensors ξ, ζ which are
necessary for the metriplectic ROM (9). On the other hand, an even simpler description of these objects
can be found by appealing to some basic facts from exterior algebra (unfamiliar readers can find everything
necessary in e.g. [30, Chapter 1] or [31, Chapter 19]). Beginning with the computation of ξ, recall that
any SS matrix (more formally, any antisymmetric (0, 2)-tensor) decomposes as a sum of basis bivectors
ei ∧ ej = ei ⊗ ej − ej ⊗ ei. In view of this, it is convenient to identify the matrix L with the bivector sum
L =

∑
j<i L

ijei ∧ ej , where the functions Lij(x) may depend on the state x. The action of L on a vector

v ∈ RN is then identical to the matrix-vector product, since

Lv =
∑
j<i

(
Lij (ej · v) ei − Lij (ei · v) ej

)
=

∑
j<i

Lijvjei −
∑
j>i

Ljivjei =
∑
i,j

Lijvjei,

where the skew-symmetry of L was used along with the relationship

(b ∧ c) · a = (−1)1(2+1)a · (b ∧ c) = (a · c)b− (a · b)c, a,b, c ∈ RN .

The advantage of this identification is a simple and coordinate-free solution to (6) which is computable
following Proposition 3.1 and does not require the storage of a rank-3 tensor. In particular, choose an index
k1 such that Sk1 ̸= 0 and define

ξ = L ∧ sk1
, sk1

=
ek1

Sk1
.

It follows from the definitions of L, sk1 and properties of the exterior product that ξ is totally antisymmetric
and satisfies the equality

ξ (∇S) = (∇S · L) ∧ sk1
+ (sk1

· ∇S)L = −L∇S ∧ sk1
+ L = L,

so that ξ also solves (6). Therefore, the reduced tensor ξ̂ which solves the normal equations (8) is easily
constructed through

ξ̂ = U⊺ξ (U)U = U⊺LU ∧U⊺sk1
= L̂ ∧ ŝk1

,

where L̂ = U⊺LU as in (5) and ŝk1
= U⊺sk1

. This implies that the structure-preserving counterpart to L

(no longer called L̂!) is given in bivector form by

ξ̂
(
∇Ŝ

)
= −L̂∇Ŝ ∧ ŝk1 +

(
ŝk1 · ∇Ŝ

)
L̂.

The degeneracy condition ξ̂
(
∇Ŝ

)
∇Ŝ = 0 is now satisfied by construction, since L is skew-symmetric and

so

ξ̂
(
∇Ŝ

)
∇Ŝ = (0)ŝk1 −

(
ŝk1 · ∇Ŝ

)
L̂∇Ŝ +

(
ŝk1 · ∇Ŝ

)
L̂∇Ŝ = 0.

Remark 3.2. As in the computation above, it is usually beneficial to avoid expressing multivectors in a
traditional tensor basis, since the number of terms grows factorially with the degree. While bivectors are
easily expressed coordinate-wise using the relations ei∧ej = ei⊗ej−ej⊗ei, basis trivectors already require
a 6-term sum indexed over the permutation group S3, producing many more intermediates which must be
computed and stored.

It is similarly beneficial to rewrite the 4-tensor ζ. Note that the expression for ζ in Proposition 3.1 is
already somewhat useful for this purpose because it enables the computation of the metriplectic ROM (9)
without actually storing or manipulating the full object. This is because the term entering (1) rewrites as

M∇S = ζ (∇E,∇E)∇S =

r∑
α=1

λα (∇S ·Aα∇E)Aα∇E,

so that ζ is accessed exclusively through the matrices Aα. However, following the construction in Proposi-
tion 3.1 still requires storing an array of skew-symmetric matrices which are extraordinarily sparse and often
depend on the state x, adding unnecessary computational expense. While the x-dependence is not easy to
handle, the storage and computation of the Aα can be reduced with an exterior algebraic factorization as
before.

Remark 3.3. In practice, it is usually easier to work with mα ←
√
λαm

α. From now on, we write
M =

∑
α mα ⊗mα with the understanding that the eigenvectors mα no longer have unit magnitude. The

reader can check that the conclusions of Proposition 3.1 are unaffected by this change.
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Again, it is useful to identify the matrices Aα with the bivectors Aα =
∑

j<i A
α,ijei∧ej , so that for each

1 ≤ α ≤ r there is a decomposition following Proposition 3.1,

Aα = aαk0
∧ ek0 , aαk0

=
mα

Ek0
,

where k0 is an index such that Ek0 ̸= 0. Since the normal equations (8) for ζ̂ are solved when Âα = U⊺AαU,

this means the reduced-order Âα are given by

Âα = âαk0
∧Uk0 , âαk0

=
U⊺mα

Ek0
,

where Uk0 = U⊺ek0
denotes the kth0 row of U. This affords a simple representation for the matrix-vector

products

Âα∇Ê = −∇Ê ·
(
âαk0
∧Uk0

)
=

(
∇Ê ·Uk0

)
âαk0
−

(
∇Ê · âαk0

)
Uk0 ,

leading to greater efficiency in the numerical implementation. Moreover, it is easy to see that Âα remains

skew-symmetric for all α, so that ζ̂
(
∇Ê,∇Ê

)
∇Ê = 0 by construction. Putting all of the computations in

this Section together yields the following result which facilitates the numerical experiments in Section 5.

Theorem 3.4 (Metriplectic structure-preserving ROM). Suppose L, M =
∑

α mα⊗mα, E and S describe
a metriplectic dynamical system (1) with state x ∈ RN and associated tensors ξ, ζ satisfying (6) and (7) for
all x. Suppose x̂ ∈ Rn is a low-dimensional approximation to the state in the sense that x ≈ x̃ = x0 +Ux̂
for some initial state x0 ∈ RN and linear mapping U ∈ RN×n. Let 1 ≤ k0, k1 ≤ N be indices such that
Ek0(x) ̸= 0 and Sk1(x) ̸= 0 for all x (otherwise the conclusion holds locally) and define

ξ̂ = L̂ ∧ ŝk1
, ŝk1

=
Uk1

Sk1
,

Âα = âαk0
∧Uk0 , âαk0

=
U⊺mα

Ek0
,

where L̂ = U⊺LU and ζ̂ =
∑

α Âα ⊗ Âα. Then, denoting F̂ = F ◦ x̃ for any function F , the ROM

˙̂x =
{
x̂,∇Ê (x̂)

}
+
[
x̂,∇Ŝ (x̂)

]
:= ξ̂ (x̃)

(
∇Ŝ (x̂)

)
∇Ê (x̂) + ζ̂ (x̃)

(
∇Ê (x̂) ,∇Ê (x̂)

)
∇Ŝ (x̂) ,

preserves the original metriplectic structure. Suppressing the potential state dependence, this has the explicit
representation

˙̂x =
(
∇Ê · L̂∇Ŝ

)
ŝk1 −

(
ŝk1 · ∇Ê

)
L̂∇Ŝ +

(
ŝk1 · ∇Ŝ

)
L̂∇Ê

+

r∑
α=1

(
Aα∇Ê · ∇Ŝ

)
Aα∇Ê,

where Aα∇Ê is expressed in terms of âk0 and the kth0 row of U as

Âα∇Ê =
(
∇Ê ·Uk0

)
âαk0
−

(
∇Ê · âαk0

)
Uk0 .

Remark 3.5. Note that the quantities L̂,Aα,mα, ŝk1
, âαk0

may depend on x̃, so that the metriplectic ROM
generally depends on the full N -dimensional input space. On the other hand, there are many special cases
where this dependence can be mitigated or removed entirely. Example 5.2 in Section 5 gives one such
illustration. Future work will also consider hyper-reduction strategies such as DEIM [32] for this purpose.

4. Error estimate

It is important to know that the metriplectic ROM described in Theorem 3.4 will converge to the true
solution as the reduced dimension n approaches the full resolution N . The results of this Section show that
this is indeed the case when the mapping U is generated by POD and the snapshot matrix is augmented with
gradient information. To explain why, let ∥·∥ denote the usual norm in L2([0, T ]) and denote w = x − x0.
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Choose weighting parameters µ, ν ∈ R as well as nt instants ti ∈ [0, T ] and consider the snapshot matrix
Y ∈ RN×3nt ,

Y =
(
w (ti) µ∇E (x(ti)) ν∇S (x(ti))

)nt

i=1
.

Remark 4.1. For simplicity, all experiments in Section 5 use the weights µ = ν = 1.

Suppose Y has rank r and denote by σi the ith singular value of Y . Then, if U ∈ RN×n is the rank
n < r matrix of left singular vectors and P⊥ = I −UU⊺ is orthogonal projection onto the complement of
Span (U), standard POD theory (see e.g. [29]) implies that

(10)
∥∥P⊥w

∥∥2 + µ2
∥∥P⊥∇E

∥∥2 + ν2
∥∥P⊥∇S

∥∥2 =
∑
j>n

σ2
j .

Recall also the Lipschitz constant and logarithmic Lipschitz constant, denoted for a general function F
between metric spaces as

CF = sup
u̸=v

|F (u)− F (v)|
|u− v|

, cF = sup
u̸=v

(u− v) · (F (u)− F (v))

|u− v|2
.

This can be used to derive the following result for the present scheme.

Theorem 4.2. Let x(t) denote the solution to the FOM (1) with initial condition x0 and let x̂(t) denote

the solution to the ROM (9) with ξ̂ = U⊺ξ (U)U, ζ̂ = U⊺ζ (U,U)U and initial condition x̂0 = 0. Suppose
ξ, ζ,∇E,∇S are Lipschitz continuous in space and L2-integrable in time. Then, the approximation error
satisfies

∥x− (x0 +Ux̂)∥2 ≤ C(T, ξ, ζ, µ, ν)
∑
j>r

σ2
j .

Proof. First, suppose x0 = 0, so that x̃ = Ux̂ and the approximation error becomes

x−Ux̂ = (x−UU⊺x) + (UU⊺x−Ux̂) = P⊥x+ y.

For cleanliness of notation, we denote X̄ = UU⊺X and

F(x) = ξ̄(x)
(
∇̄S(x)

)
∇̄E(x) + ζ̄(x)

(
∇̄E(x), ∇̄E(x)

)
∇̄S(x).

It follows from (1) and (9) that the error decomposes into three terms,

ẏ = ˙̄x−U ˙̂x = ξ̄ (∇S(x))∇E(x) + ζ̄ (∇E(x),∇E(x))∇S(x)− F (Ux̂)

= ξ̄ (∇S(x))∇E(x) + ζ̄ (∇E(x),∇E(x))∇S(x)− F(x)

+ (F(x)− F (x̄)) + (F (x̄)− F (Ux̂))

:= T1 +T2 +T3.

Suppressing the x argument, T1 can be written as

T1 = ξ̄
(
P⊥∇S

)
∇E + ξ̄

(
∇̄S

)
P⊥∇E

+ ζ̄
(
P⊥∇E,∇E

)
∇S + ζ̄

(
∇̄E,P⊥∇E

)
∇̄S + ζ̄

(
∇̄E, ∇̄E

)
P⊥∇S,

so that its norm can be estimated as

|T1| ≤
(∣∣ξ̄∣∣ ∣∣∇̄S∣∣+ ∣∣ζ̄∣∣ |∇E| |∇S|+ ∣∣ζ̄∣∣ ∣∣∇̄E∣∣ ∣∣∇̄S∣∣) ∣∣P⊥∇E

∣∣
+
(∣∣ξ̄∣∣ |∇E|+ ∣∣ζ̄∣∣ ∣∣∇̄E∣∣2) ∣∣P⊥∇S

∣∣
:= f1

∣∣P⊥∇E
∣∣+ f2

∣∣P⊥∇S
∣∣ .

The term T2 can be rewritten in a similar fashion. Collecting all terms involving ξ yields

ξ̄(x)
(
∇̄S(x)

)
∇̄E(x)− ξ̄ (x̄)

(
∇̄S (x̄)

)
∇̄E (x̄)

=
(
ξ̄(x)− ξ̄ (x̄)

) (
∇̄S(x)

)
∇̄E(x)

+ ξ̄ (x̄)
(
∇̄S(x)− ∇̄S (x̄)

)
∇̄E(x)

+ ξ̄ (x̄)
(
∇̄S (x̄)

) (
∇̄E(x)− ∇̄E (x̄)

)
,
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while collecting the terms involving ζ gives

ζ̄(x)
(
∇̄E(x), ∇̄E(x)

)
∇̄S(x)− ζ̄ (x̄)

(
∇̄E (x̄) , ∇̄E (x̄)

)
∇̄S (x̄)

=
(
ζ̄(x)− ζ̄ (x̄)

) (
∇̄E(x), ∇̄E(x)

)
∇̄S(x)

+ ζ̄ (x̄)
(
∇̄E(x)− ∇̄E (x̄) , ∇̄E(x)

)
∇̄S(x)

+ ζ̄ (x̄)
(
∇̄E (x̄) , ∇̄E(x)− ∇̄E (x̄)

)
∇̄S(x)

+ ζ̄ (x̄)
(
∇̄E (x̄) , ∇̄E (x̄)

) (
∇̄S(x)− ∇̄S (x̄)

)
.

Hence, the norm of |T2| is bounded above by

|T2| ≤ |UU⊺|
∣∣∇̄S(x)∣∣ ∣∣∇̄E(x)

∣∣ (Cξ + Cζ

∣∣∇̄E(x)
∣∣) ∣∣P⊥x

∣∣
+ |UU⊺|

∣∣ξ̄ (x̄)∣∣ (C∇S

∣∣∇̄E(x)
∣∣+ C∇E

∣∣∇̄S (x̄)
∣∣) ∣∣P⊥x

∣∣
+ C∇E |UU⊺|

∣∣ζ̄ (x̄)∣∣ ∣∣∇̄S(x)∣∣ (∣∣∇̄E(x)
∣∣+ ∣∣∇̄E (x̄)

∣∣) ∣∣P⊥x
∣∣

+ C∇S |UU⊺|
∣∣ζ̄ (x̄)∣∣ ∣∣∇̄E (x̄)

∣∣2 ∣∣P⊥x
∣∣

:= f3
∣∣P⊥x

∣∣
The assumptions of the Theorem imply that the supremum of f3 over x ̸= x̄ is finite, so the above inequality
combined with T2 = F (x)− F (x̄) implies that CF ≤ sup f3 <∞ and the Lipschitz constant CF exists. As
|cF | ≤ CF , it follows that the logarithmic Lipschitz constant cF exists also.

Therefore, testing each term of ẏ against y and estimating with Cauchy-Schwarz yields

y ·T1 ≤
(
f1

∣∣P⊥∇E
∣∣+ f2

∣∣P⊥∇S
∣∣) |y| ,

y ·T2 ≤ f3
∣∣P⊥x

∣∣ |y| ,
y ·T3 =

y ·T3

|y|2
|y|2 ≤ cF |y|2 ,

where the scalar functions fj may depend on t since their terms may depend on x. Noting that ˙|y| =
(1/ |y|) (y · ẏ) and using the estimates above yields the inequality

˙|y| − cF |y| ≤ f1
∣∣P⊥∇E

∣∣+ f2
∣∣P⊥∇S

∣∣+ f3
∣∣P⊥x

∣∣ .
Multiplying both sides by the integrating factor e−cF t and applying Gronwall’s inequality for t ∈ [0, T ] then
gives

|y| ≤
∫ t

0

ecF (t−τ)
(
f1

∣∣P⊥∇E
∣∣+ f2

∣∣P⊥∇S
∣∣+ f3

∣∣P⊥x
∣∣) dτ,

where we have used that y(0) = 0. Then, Cauchy-Schwarz along with T ≥ t imply

|y|2 ≤ C4

∥∥f1 ∣∣P⊥∇E
∣∣+ f2

∣∣P⊥∇S
∣∣+ f3

∣∣P⊥x
∣∣∥∥2

≤ C4

(
∥f1∥2

∥∥P⊥∇E
∥∥2 + ∥f2∥2 ∥∥P⊥∇S

∥∥2 + ∥f3∥2 ∥∥P⊥x
∥∥2) ,

where C4 =
∫ T

0
e2cF (T−τ) = (e2cFT − 1)/2cF . Finally, integrating both sides in t yields

∥y∥2 ≤ TC4

(
∥f1∥2

∥∥P⊥∇E
∥∥2 + ∥f2∥2 ∥∥P⊥∇S

∥∥2 + ∥f3∥2 ∥∥P⊥x
∥∥2) ,

so that in view of (10) the error can be estimated as

∥x−Ux̂∥2 ≤
∥∥P⊥x

∥∥2 + ∥y∥2
≤

(
1 + TC4

(
∥f1∥2

µ2
+
∥f2∥2

ν2
+ ∥f3∥2

))∑
j>r

σ2
j = C

∑
j>r

σ2
j ,

as desired. To complete the argument, consider what happens when x0 ̸= 0. In this case, w = x − x0

satisfies ẇ = ẋ and the ROM error is

x− (x0 +Ux̂) = (w − w̄) + (w̄ −Ux̂) = P⊥w + z.
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Since
∥∥P⊥w

∥∥ is controlled by (10) and z rewrites as

ż = ˙̄x− F (x0 +Ux̂)

=
(
˙̄x− F(x)

)
+
(
F(x)− F̄ (x0 + w̄)

)
+ (F (x0 + w̄)− F (x0 +Ux̂)) ,

this case can be analyzed identically to the case x0 = 0. □

5. Examples

This section evaluates the performance of the metriplectic ROM (referred to as the SP-ROM) proposed
in Theorem 3.4 on some benchmark problems. To create a fair comparison, its performance is measured
against that of the standard Galerkin POD-ROM (3) referred to as the G-ROM and a mild extension (5)
of the Hamiltonian POD-ROM from [16] referred to as the EH-ROM which approximately preserves the
compatibility conditions (2). The error metrics used for this purpose are the relative ℓ2 error and the
maximum ℓ2 error, denoted respectively as

Er (x̃) =

√∑
i |x(ti)− x̃(ti)|2∑

i |x(ti)|
2 , E∞ (x̃) = max

i
|x(ti)− x̃(ti)| ,

where x is the true solution and 1 ≤ i ≤ nt are the indices of the discretization points ti ∈ [0, T ]. Besides the
error metrics, the energy difference |E(T )− E0| (E0 = E(t0)) is reported as well as the online computational
time in seconds necessary for integrating each model. This collection of data provides a rough measure
of model quality which is used to draw conclusions about ROM performance. The experiments chosen
are a low-dimensional example motivated by gas kinetics and an infinite-dimensional example coming from
elasticity theory. In both cases, the initial conditions are parameterized and used to train the mapping U,
and the ROMs are used to predict unseen solutions given relevant initial data. In all cases, the SciPy [33]
interface to LSODA [34] is used to integrate the resulting ODE systems with an error tolerance of 10−14.
All experiments are carried out on a 2022 M1 MacBook Pro with 32GB of RAM.

5.1. Two gas containers exchanging heat and volume. To verify the correctness of the claims in
Theorem 4.2 and Theorem 3.4, it is useful to consider the following low-dimensional example from [35].
Two gas containers are allowed to exchange heat and volume on either side of a wall. The state variable
is x =

(
q p S1 S2

)⊺ ∈ R4 where q, p are the position resp. momentum of the wall and S1, S2 are the
entropy of the gases in the respective containers. The entropy function is then S = S1 + S2 and the energy
function is

E(x) =
p2

2m
+ E1 + E2 :=

p2

2m
+

e
S1

(NkB)

ĉ q

 2
3

+

 e
S2

(NkB)

ĉ (2− q)

 2
3

, ĉ =

(
4πm2

3h2N

) 3
2 e

5
2

N
,

where m is the mass of the wall, N is the number of gas particles, h is the Planck constant and kB is the
Boltzmann constant. For the rest of the discussion, a normalization is assumed such that M = NkB = ĉ = 1.
This system then has the metriplectic form

q̇
ṗ

Ṡ1

Ṡ2

 =


p

2
3

(
E1

q −
E2

2−q

)
γ
T1

(
1
T1
− 1

T2

)
−γ
T2

(
1
T1
− 1

T2

)

 = L∇E(x) +M(x)∇S,

where Ti = ∂Si
Ei = (2/3)Ei, ∇S =

(
0 0 1 1

)⊤
, γ regulates the degree of heat transfer, and

L =


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 , M = γ


0 0 0 0
0 0 0 0
0 0 T−2

1 −(T1T2)
−1

0 0 −(T1T2)
−1 T−2

2 ,

 , ∇E =
2

3


−
(

e2S1

p5

) 1
3

+
(

e2S2

p5

) 1
3

(3/2) q
E1

E2

 .

Note that the matrix M decomposes (nonuniquely) as

M = m⊗m, m =
√
γ
(
0 0 T−1

1 −T−1
2

)⊺
,
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Figure 1. The phase portraits of three qualitatively different solutions to the gas
container problem with corresponding initial conditions

(
0.9 −0.4 2.4 2.0

)⊺
(left),(

0.7 0.9 1.1 2.9
)⊺

(middle), and
(
0.1 0.2 1.6 1.8

)⊺
(right).

T n Method Er % E∞ |E(T )− E0| Time (s) T n Method Er % E∞ |E(T )− E0| Time (s)

8

- FOM - - 5.507× 10−14 0.07517

32

- FOM - - 1.279× 10−13 0.2323

2

SP-ROM 15.84 0.9166 1.066× 10−13 0.01457

2

SP-ROM 14.71 0.9166 1.243× 10−13 0.02071

EH-ROM 16.00 0.9162 0.3127 0.01631 EH-ROM 15.29 0.9162 3.357× 10−3 0.02199

G-ROM 58.96 2.436 46.29 0.02356 G-ROM 182.9 7.188 965.5 0.04956

3

SP-ROM 7.462 0.2338 5.861× 10−14 0.07991

3

SP-ROM 7.367 0.2338 1.279× 10−13 0.2262

EH-ROM 7.303 0.2246 0.4692 0.06545 EH-ROM 9.050 0.3677 1.378 0.1906

G-ROM 6.808 0.2244 0.4364 0.06068 G-ROM 8.971 0.3754 1.422 0.1843

4

SP-ROM 3.968× 10−12 3.465× 10−13 4.619× 10−14 0.07635

4

SP-ROM 1.005× 10−11 6.611× 10−13 2.025× 10−13 0.1734

EH-ROM 5.252× 10−12 3.988× 10−13 1.385× 10−13 0.07155 EH-ROM 1.099× 10−11 8.299× 10−13 1.421× 10−13 0.1683

G-ROM 6.769× 10−12 3.934× 10−13 2.345× 10−13 0.05992 G-ROM 1.062× 10−11 6.225× 10−13 2.984× 10−13 0.1725

Table 1. Results of the gas container experiment. Dashes indicate “not applicable” to the
case of the FOM.

so that by choosing indices k0, k1 such that Ek0 ̸= 0 and Sk1 ̸= 0 the tensors ζ, ξ can be computed following
Proposition 3.1. The choice k0 = k1 = 3 yields the reduced-order objects

ξ̂ = L̂ ∧U3, ζ̂ (x̃) = Â (x̃)⊗ Â (x̃) , Â (x̃) =
3

2

U⊺m (x̃)

E1 (x̃)
∧U3,

making it clear that ξ̂ can be precomputed while some components of ζ̂ must be computed online. For the
present experiment, ROM performance is compared at various levels of compression when integrated over
two different lengths of time, one of which extends away from the training regime. The initial state x0

is assumed to lie in [0.08, 1.8] × [−1, 1] × [1, 3] × [1, 3], and snapshots from 25 simulations with γ = 8 and
random, uniformly distributed initial data are used to train the POD approximation U. Some representative
solutions are displayed in Figure 1. Snapshots of the shifted solution x− x0 as well as the gradient ∇E (x)
are saved every 0.02 time instants in the interval [0, 8] during training and concatenated to form the snapshot
matrix Y. As ∇S is a constant independent of x, it is included only once as the final column of the snapshot
matrix.

The performance of each ROM is tested using the solution with corresponding initial condition x0 =(
0.9 −0.4 2.4 2.0

)⊺
not included in the training set. Table 5.1 compares the errors that arise when

integrating to T = 8 where snapshots end, as well as when integrating to T = 32 which extends well past
this point. Figures 2 and 3 display the FOM and ROM positions q, entropies S, and energy variations E−E0

over each time interval when n = 2, 3, 4. Notice that all methods converge with refinement as expected, but
only the proposed SP-ROM is capable of preserving the initial energy (to order 10−13) as well as producing a
reasonable entropy profile regardless of the reduced dimension. It is also interesting to note that the simple
G-ROM can produce quite unphysical results in terms of its energy and entropy profiles, including the rapid
energy increase seen in Figure 3. This shows that there are clear benefits to preserving the metriplectic
structure of the original system, especially in the presence of downstream procedures which rely on accurate
estimates of such quantities.
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Figure 2. A comparison of ROM solutions for the 4-dimensional gas container example
when T = 8 and n = 2, 3, 4, respectively. Plotted are the Exact Solution, G-ROM, EH-
ROM, and SP-ROM. Observe the convergence as predicted in Theorem 4.2.

Figure 3. A comparison of ROM solutions for the 4-dimensional gas container example
when T = 32 and n = 2, 3, 4, respectively. Plotted are the Exact Solution, G-ROM, EH-
ROM, and SP-ROM. Note that only the SP-ROM produces reasonable energy and entropy results.
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5.2. A damped thermoelastic rod. More useful from a ROM perspective is when the systems under
consideration represent discretizations of infinite-dimensional metriplectic dynamics. Consider an infinite-
dimensional example of the system in [36, Section 3.1] (specialized in [37]), where a 1-D elastic rod with
coordinate s ∈ [0, ℓ] evolves as a damped Hamiltonian system with friction. The dynamics of this motion
are governed by the metriplectic system q̇

ṗ

Ṡ

 =

 p
m

V ′(q)− γ p
m

γ p2

m2

 = L∇E(q, p, e) +M(q, p, e)∇S,

where V is a given potential function, γ is a constant controlling the rate of dissipation, ∇S,∇E now denote
L2-gradients, m = m(s) is the mass density, q = q(s) is the position, p = p(s) is the momentum, and e = e(s)
is the internal energy representing the conversion of mechanical energy into heat. Explicitly, the state of the
system can be described by x(s) =

(
q(s) p(s) S(s)

)⊺
where the functions E and S are given by

E(p, q, e) = H(p, q) + S(e) =

∫ ℓ

0

(
p(s)2

2m(s)
+ V (q(s))

)
+

∫ ℓ

0

e(s),

and whereH(p, q) is the Hamiltonian function for the system. Notice thatH is no longer a conserved quantity
but has been replaced by E which balances energetic and entropic contributions. A simple calculation
using the definition dF (v) = (∇F, v)L2 yields the gradients and operators which describe these metriplectic

dynamics: it follows that ∇S =
(
0 0 1

)⊤
,

L =

 0 1 0
−1 0 0
0 0 0

 , M = γ

0 0 0
0 1 − p

m

0 − p
m

(
p
m

)2
 , ∇E =

V ′(q)
p
m
1

 .

Modeling this evolution requires an appropriate discretization of the continuous system above. Consider
a semi-discretization in the rod parameter with constant mass density m, so that s is represented by the
vector s ∈ RN where N is the number of discretization points. Then, the discretized state (also denoted x)
becomes a (2N + 1)-vector which evolves according toq̇

ṗ

Ṡ

 =

 p
m

V′(q)− γ p
m

γ |p|2
m2

 = L∇E(x) +M(x)∇S,

where ∇S =
(
0 0 1

)⊺
,

L =

0N×N I 0
−I 0N×N 0
0 0 0

 , M(x) = γ

0N×N 0N×N 0
0N×N I − p

m

0 −p⊺

m

(
|p|
m

)2

 , ∇E =

V′(q)
p
m
1

 .

Notice that S2N+1 = E2N+1 = 1 ̸= 0 and M decomposes as

M =

N∑
α=1

mα ⊗mα, mα =
√
γ
(
0 eα −pα

m

)⊺
,

so that ξ̂, ζ̂ can be computed as

ξ̂ = L̂ ∧U2N+1, ζ̂ (x̃) =

N∑
α=1

Aα (x̃)⊗Aα (x̃) , Aα (x̃) = U⊺mα (x̃) ∧U2N+1.

Moreover, although M depends on the full-order state x̃ ∈ R2N+1, each mα is linear in the solution and so
the online cost can be made independent of this number (although it will still depend on N , the number of
terms in the sum). More precisely, notice that

M = CC⊺, C =
√
γ
(
0N×N I − p

m ,
)⊺
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Figure 4. The position q(t, s) and momentum p(t, s) functions of three qualitatively dif-
ferent solutions to the thermoelastic rod problem contained in the training set.

so that C (x̃) ∈ R(2N+1)×N can be written as

C (x̃) = C0 +C1 (x̂) =
√
γ

0N×N

I

−p⊺

m

+

√
γ

m

 0N×N

0N×N

−
(
UN :2N x̂

)⊺
 ,

where UN :2N indicates the N×n matrix formed from rows N to 2N of U. It follows that the reduced object

U⊺C (x̃) = U⊺C0 +U⊺C1 (x̂) = U⊺C0 −
√
γ

m
U2N+1 ⊗UN :2N x̂,

contains all U⊺mα in its columns and requires only multiplication by x̂ online. This optimization has been
used throughout this example on the FOM (where p = p0 + (p− p0)) as well as all ROMs. In addition, all
simulations use the potential V (q) = cos q along with constants γ = 8, ℓ = 1 and N = 250.

The performance of each ROM in this case is evaluated using a family of trajectories with parameterized
initial conditions. More precisely, it is assumed that x0 satisfies the initial position and momentum conditions

q0(s) = eµ1s, µ1 ∈ [−0.2, 5.2],

p0(s) =
1

1 + µ2s2
, µ2 ∈ [−1, 1],

along with some initial entropy S0 ∈ [1, 3]. Some representative solutions to the thermoelastic rod system
with this type of initial data can be found in Figure 4. As in the previous example, 25 uniformly random
instances of

(
µ1 µ2 S0

)⊺
are drawn and used to form the initial conditions used for training the POD

map U. Note that the snapshot matrix Y includes snapshots of the shifted solution x − x0 as well as the
gradients ∇E(x) collected from the interval [0, 8] in t-increments of 0.02. Again, the constant vector ∇S is



16 ANTHONY GRUBER1,∗, MAX GUNZBURGER1, LILI JU2, AND ZHU WANG2

Figure 5. Eigenvalue plots corresponding to the snapshot matrix in the thermoelastic rod
example. The y-axis displays the magnitude of each eigenvalue as a percentage of the total sum.

T n Method Er % E∞ |E(T )− E0| Time (s) T n Method Er % E∞ |E(T )− E0| Time (s)

8

- FOM - - 1.918× 10−11 0.1614

16

- FOM - - 1.651× 10−11 0.2766

10

SP-ROM 9.015 22.28 2.814× 10−12 0.1965

10

SP-ROM 8.166 26.49 1.648× 10−12 0.4123

EH-ROM 4.896 7.980 6.687 0.06249 EH-ROM 4.134 7.980 36.43 0.1039

G-ROM 8.336 21.65 16.99 0.1091 G-ROM 8.394 21.65 59.49 0.1975

20

SP-ROM 4.020 7.938 1.108× 10−12 0.1762

20

SP-ROM 3.565 10.71 5.571× 10−12 0.4895

EH-ROM 3.625 5.708 5.686 0.05898 EH-ROM 2.881 5.708 21.06 0.1107

G-ROM 4.864 15.49 9.108 0.1186 G-ROM 5.304 15.49 61.26 0.1948

40

SP-ROM 0.8734 0.5371 4.121× 10−12 0.2523

40

SP-ROM 0.9430 1.509 4.234× 10−12 0.4403

EH-ROM 0.8767 0.5469 0.8563 0.07977 EH-ROM 0.9339 1.694 4.457 0.1378

G-ROM 1.001 0.4779 1.555 0.1339 G-ROM 1.207 1.029 9.142 0.2258

48

- FOM - - 1.253× 10−11 0.6041

96

- FOM - - 3.439× 10−12 1.003

10

SP-ROM 9.197 42.97 1.708× 10−11 0.6814

10

SP-ROM 10.11 44.97 8.413× 10−12 0.9792

EH-ROM 18.20 154.0 280.6 0.2015 EH-ROM 92.49 846.9 1082 0.4351

G-ROM 15.20 122.6 297.3 0.3931 G-ROM 72.28 787.7 1190 0.7518

20

SP-ROM 4.456 21.09 2.643× 10−12 0.6928

20

SP-ROM 5.013 6.056 8.811× 10−13 0.8788

EH-ROM 9.079 68.68 103.6 0.2628 EH-ROM 29.25 252.3 320.5 0.4126

G-ROM 107.3 1498 3051 0.5186 G-ROM - - - -

40

SP-ROM 1.302 5.538 4.832× 10−13 0.6735

40

SP-ROM 1.495 6.056 2.842× 10−12 1.427

EH-ROM 2.063 14.42 21.07 0.2682 EH-ROM 5.369 41.49 49.38 0.5114

G-ROM 3.908 32.51 67.35 0.5442 G-ROM 18.69 168.8 240.3 0.9306

Table 2. Results of the thermoelastic rod experiment. Dashes indicate “not applicable”
when reporting the FOM, and lack of convergence when reporting the ROMs.

included as the last column of Y. It is interesting to note that the first eigenvalue of the snapshot matrix is
much larger than the rest, but the remaining eigenvalues decay relatively slowly until roughly n = 350 (see
Figure 5). This indicates that these dynamics cannot be captured by only a few linear POD basis functions.

After training U, the ROMs are evaluated online using the initial data corresponding to the parameter(
0.65 −0.1 1.9

)⊺
not included in the training set. The results of this procedure are tabulated in Table 5.2

and illustrated in Figures 6 and 7. Clearly, the greatest advantage of the metriplectic SP-ROM is its ability
to preserve the energy conservation and entropy growth of the original system independently of n, leading to
much greater accuracy and stability over time. Conversely, there appears to be little advantage to employing
the more expensive SP-ROM over the cheaper, matrix-oriented EH-ROM when the integration takes place
over small times, as there is not enough accumulation from the violation of the compatibility conditions (2)
to significantly harm model performance. Note that the simple and straightforward G-ROM is unstable and
inferior in almost every case. Since it has no knowledge of the internal structure of the system, it cannot
accurately infer the original metriplectic dynamics.
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Figure 6. A comparison of ROM solutions for the 501-dimensional thermoelastic rod exam-
ple when T = 16 and n = 10, 20, 40, respectively. Plotted are the Exact Solution, G-ROM,
EH-ROM, and SP-ROM. Observe the convergence as predicted in Theorem 4.2.

Figure 7. A comparison of ROM solutions for the 501-dimensional thermoelastic rod exam-
ple when T = 48 and n = 10, 20, 40, respectively. Plotted are the Exact Solution, G-ROM,
EH-ROM, and SP-ROM. Note that only the SP-ROM produces reasonable energy and en-
tropy results.
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Er %
T

8 16 32 64 128 256 512

n

5
SP-ROM 19.28 17.96 17.18 17.44 17.55 17.36 17.18
EH-ROM 11.36 10.02 12.34 668.0 - - -
G-ROM 10.21 11.69 12.88 70.01 322.4 - -

10
SP-ROM 9.015 8.166 8.425 9.672 10.29 10.51 10.59
EH-ROM 4.896 4.134 7.815 34.64 160.6 - -
G-ROM 8.336 8.394 8.409 27.23 509.0 - -

20
SP-ROM 4.020 3.565 3.952 4.750 5.118 5.231 5.262
EH-ROM 3.624 2.881 4.858 14.54 51.36 922.8 -
G-ROM 4.864 5.304 10.77 - - - -

Table 3. Long-time integration results for the thermoelastic rod example. Values are the
relative error in percentage form, and dashes indicate when the solver does not converge.

It is also useful to investigate the long-term stability of these ROMs. As the EH-ROM and the G-ROM
are not truly metriplectic, it is expected that their performance will decay as the interval of integration moves
far away from the training data. This is tested using the same experiment as above by varying the right
endpoint of the temporal integration (recall that U is trained only on snapshots coming from the interval
[0, 8]). Table 5.2 shows the results of integrating over ranges [0, T ] where T = 2k, 3 ≤ k ≤ 9. As expected,
the metriplectic SP-ROM is quite stable, while the others eventually break down. It is interesting that the
naive G-ROM is unpredictable, exhibiting better stability when n = 10 than when n = 20. Note that the
SP-ROM is useful for reducing computational costs in this regime also, as the time necessary to integrate
the FOM at T = 512 is roughly 5.5 seconds versus 2-3 seconds (depending on n) for the SP-ROM.

6. Conclusion

A new strategy for the model reduction of metriplectic systems has been proposed and shown to guarantee
a strong form of the first and second laws of thermodynamics. By preserving the original metriplectic
structure at the algebraic level, the proposed ROM is able to produce more realistic energy and entropy
profiles than other POD-ROMs which cannot guarantee structure-preservation. It has been shown that the
metriplectic POD-ROM conserves energy to arbitrary precision regardless of the reduced dimension and
converges to the true solution as this dimension increases. As the proposed ROM is trained similarly to
standard POD-ROMs, it is useful as a drop-in replacement for metriplectic problems demanding physically
realistic solutions where conserved quantities are important or longer time scales where stability is relevant.
Future work will investigate applications to more complex problems such as those mentioned in Section 1.2,
as well as effective methods such as Discrete Empirical Interpolation for making the metriplectic ROM
completely independent of the full-order dimension. As several important problems in fluid mechanics are
also known to have a metriplectic form (see e.g. [1]), it is especially interesting to consider the application
of these techniques to realistic oceanic and atmospheric models which require strict adherence to physical
laws.
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