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VWhat Is a Neural Network!?

* A (fully-connected, feedforward) artificial
neural network (NN or ANN) is....

a function approximation machine
loosely modeled on biological systems.

» Each layer contains neurons (nodes) which
contain learnable parameters (edge

welghts and biases).

» # Nodes = Width, # Layers = Depth



How Does [t Learn?

Information Is passed forward from Inputs
to outputs.

Outputs are used to make a prediction,
which carries some assoclated cost.

Information flows backward through

oradient of cost (automatic differentiation).

Derlvatives update learnable parameters ——— e Ly & B N

through gradient descent.



VWhat Can ANNs Do!

» Extremely powerful for both
bredictive and generative

tasks.

* Highly overparameterized

Potential copyright Issue

(contrast to tradrtional
methods)

» Fact: Two-layer ANNSs contain

inear FEM! (He et al. 2013) Wang et al, CVPR (2018)



VWhat Can ANNs Do?

New field; very limrted formal
understanding.

Nonlinear and nonconvex
optimization — poor robustness.

Huge amount of interest In

theory and algorithms.

Very multidisciplinary; math, stats,

Cat Airplane

compscl, physics, engineering,

even soclal sciences.



~ully Connected Network

+ Given inputs x = xg € R™ and layers 1 < ¢ < L, a fully connected

NN is a function: x;, = fr, of;_; 0...0f(x)

Xy = fo(xp—1) =09 (Wyxp_1 + by),

. Here W, e RV*M-1 b, e R™ gre the weights and biases at layer ¢,
and o Is a nonlinear activation function.

» Ex) Rectified Linear Unit o(x) = ReLU(x) = max{x,0} .



Network [raining

» Pass input xg forward, generating y = X, .

* Ebvaluate some loss L(y) = L(x,0) depending implicitly on Xg and
some parameters 6 .

» Compute derivatives backward using chain rule.

 Update parameters 0 < 0 —t L'(y)ye Where t Is the learning rate.




Backpropagation Algorithm

In practice, we use backpropogation.

Backpropagation is an instance of

reverse mode automatic
differentiation.

Potential copyright Issue

Fach variable Is associated to a node
in the graph.

Graph Is traced backward to obtain

oradient information.
Image by Christopher Olah (https://colah.github.io/posts/20 | 5-08-Backprop/)



https://colah.github.io/posts/2015-08-Backprop/

VWhat Do We Get From T his!

* Suppose o Is nonpolynomial. A network of the form
y = Wao (W1x + b;) can approximate any Borel measurable
function to arbitrary accuracy! (Cybenko 1989, Hornik 1991).

» Unfortunately, there is no practical bound on width... In practice,
deeper networks still perform better.

» Lets try it out
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VWhat About High Dimensional Space!

» Can we still learn a function (e.g. y = sin (||x]|?)) when the domain is
very large!

» Direct methods are not effective without large amounts of data, due
to model overfitting.

« Sometimes data Is expensive what then!?




Regression In High Dimensions

» One idea Is to project the data into a smaller space without

collapsing iImportant features.

» Ridge regression looks for a linear P : R® - R* (k< n) and a

A\

function f:R* — R such that f(x) =~ f(Px).

* With neural networks, It Is not necessary to consider only linear P.



Nonlinear Level Set Learning

» NLL 1s a network-based method (Zhang

et al. 2019, Gruber et al. 2021), for solving

this problem.

« | ook for an invertible nonlinear

transformatio

N z=g(x),hog=1 so that

the domain o

such that (foh)'(z)e; =0

forall 1€l

for all inactive

" f oh splits Into pairs (za,zr)

- By the chain rule, this implies (V f,h;;) =0

COOrdas.



Best on Average Coordinates

. Consider [|(f oh)'(z)||] = [[(Vf(x),hi(z))|

» Minimizing this means asking for coordinates which integrate the
flelds h;(z) for ¢ # 1, plus one which is “free”.

- This implies the loss functional L(h =131 Z |(f z*)||? , where

S is the sample set. SES




Smooth Setting

* [t 1S meaningful to note that -

the Dirichlet-type energy functional

his loss Is (up to scale) a discret

Za

‘lon of

£b) = [ 1 obY @R dn = [ [ I on) @) dun

where h(V)=U, I =m(V) IS a bounc

range of z1 and Z; ={ze€V

2t =t}

ed Interval containing the



Smooth Setting

» Standard techniques in the calculus of variations imply

B o AJ_ o n—1
2/ th @) (foh)(z)dp™ " dt

+ Critical iff A~(foh)=0 ie. foh isharmonic on the slices Z;
(obviously true in ideal case).



Reversible Neural Networks

» RevNets (Gomez et al. 2017/) are an invertible modification of

Residual Neural Networks (ResNets), which are built from blocks of
the form y = x + F(x) .

» ResNets allow very deep networks, and are SOTA In some image
classification tasks.

y1 = x1 + F(x2)

« RevNet blocks: y = (¥1,¥2) such that
y2 = x2 + G(y1)



Network Architecture

» Since h should be a diffeomorphism, we use a RevlNet due to (Chang
et al. 2018) inspired by Hamiltonian systems.

» Straightforward techniques show the stability of the ODE system
a(t) = Wi (t)o (Wi(t)v(t) + bi(t))
v(t) = —W; (t)o (Wa(t)u(t) + ba(t)),

* 50, this can be used for forward propagation along a network.




Network Architecture

* Let x = (up, vo),then forlayers 1 <¢ < L we have
Uy = Uy + TWZl o (W€,1V£ 1 bé,l) ;

T
Vi1l — Vy — TW&Z O (Wg,gu“_l -+ bg,g) :

* Defining z = (ur,vy) yields the mapping g .

» Both g,h are parameterized by W,;, b, (Weight sharing).



Aside: Active Subspaces

* [he NLL method can be considered a nonlinear substitute for the
Active Subspaces (AS) method (Constantine 201 3).

* AS approximates the covariance matrix C=E[Vf(Vf)! = /UVf (VAT du™

* The first columns of U In C = UAU? give a basis for the active
subspace.

» Function approximation takes place in this smaller space as before.




NLL on loy Functions

20
Domain: [0,1]"  Functions:  fa(x) = sin (||x]|*) . H 1+x

Sensitivity: Magnitude of (f oh)’'(z)e: as percentage of total.
If(x) — f(x)]];

Relative L error: ™ Jifx)], (f I1s vector of samples)
100 Samples 500 Samples 2500 Samples
FunctionMethod |z, Sens %/RRMSE %[R¢, %|R¢, %|z 4 Sens %|RRMSE %|R¢, %[R¢, %|z4 Sens %/RRMSE %|R¢, %IRE, %
‘ New NLL 78.7 3.86 827 109 [89.8 1.82 352 516 |94.5 0.827 1.72 235
fa Old NLL 160.4 6.63 145 188 165.9 4.58 10,5 13.0 169.2 4.02 911 114
AS 1-D l?o 8 30.3 759 859 (259 21.7 39.5 614 [25.9 15.9 376 44.8
New NLL 75.1 0.920 579 7.92 |88.6 0.370 278 3.97 [93.8 0.154 1.63 198 |
fs Old NLL 1/54.6 0.699 748 940 1554 0.942 7.26 9.52 156.1 0.784 6.91 8.05
lOld NLL 2[61.8 1.80 129 21.1 |68.7 1.03 922 11.1 |67.5 0.894 816 9.69




« On a 40
dimensional

sine wave
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Predicting Kinetic Energy

1

» Consider the [-D parametrized W (w?) = pget>”
2 - ’

inviscid Burgers equation on [a,b],

a,t, i) = uq,
where = (p1, p2,p3), w = w(x,t, p). ( ) =
(2,0, p) =1,
|t s useful to know the total
Kinetic energy at time . / / (@, 7, p)* da dr

1
VK (t ) = (K; K,)T = (2/ (5,1, )’ / / (2,7, 1) Wz T,mdasz)



» (Can compute gradients by
solving sensitivity equations:

» (Can then run algorithm on
samples {(t,u), K(t,p), VK (t, )}

e Forward Euler with

upwinding usec

Systems.

to solve

Wyt + (Wwy),
w#(a7 tv p’)
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+ Standard 1s to encode => solve =->

Reduced Order Modeling

+ High-fidelity PDE simulations are expensive.

+ Semli-discretization creates a lot of
dimensionality.

+ Can we get good results without solving the full Potential copyright issue
PDE!?

decode.

< Th|S Wa>/, SO‘VIﬂg |S ‘OW—dImeﬂSIOﬂa\ Image: https:/ /mpas-dev.github.io/ocean/ocean.html



https://mpas-dev.github.io/ocean/ocean.html

Full-Order Model

» FOM:  x(t,p) = £ (6, x(0),p), x(O0p) = xo(p).

“ J 1S vector of parameters.

+ Dimension of X can be huge — on the order of 10* to 10° or more.

ypically solved with time integrator e.g. Runge-Kutta.

+ Recently, neural networks used instead.

+ Difficult due to high dimensionality.



+ No,if (t,u) — x(t,u) is unique.

Drawback of FOM

+ Do we really need all 10° dimensions?

X
+ 8§ ={x(t,p) | t€[0,T],p € D} C R, N
solution manifold.
+ (n, + 1) dimensions is enough for loss-less (¢, )

representation of &’

+ How can we recover & efficiently?



Reduced Order Model

~/

+ Consider finding X st. XX X =goX

» (t,p) = X(t,p) € R" where n < N

« If n>mn,+ 1, image of X is potentially “big enough” to encode x

N

» g :R" > R" adecoder function.

+ e.g linear projection; NN autoencoder.



Reduced Order Model

“ Suppose X obeys same dynamics as X.

+ Residual ||X — AX)||* is minimized when:

» X(t,p) = gR) (1, gR), 1), K(0p) = h(xy(w)),

« Here g'(X)™ is the pseudoinverse of g’

» h:RY = R" left inverse of g

» ODE of size N converted to ODE of size n.

+ “Hard part’ 1s computing the decoder function g.



Proper Orthogonal Decompostion (POD)

+ Most popular (until recently) i1s proper orthogonal decomposition.

. - N -
« Carry out PCA on solution snapshots {u(z, X, 4;) }j=1’ generate matrix S.

« SVD: § = UXV.

# First n cols of U (say A) — reduced basis of POD modes.

« g=A islinear,so g = A

+ |nstead of X = f(X), can then solve X = ATT(AX).



+ POD works well until EWs of X

+ Conversely, FCNN/CNN captures

POD Versus ANN

decay slowly.

“ Even many modes cannot reliably
capture behavior:

Copyright

patterns quite well.

“ Are all NNs equal for this purpose!

Lee, K. and Carlberg, K. J. Comp. Phys. (2019)



CNN Model Order Reduction

» Lee and Carlberg (2019) used a convolutional neural network (CNN).

» Demonstrated greatly improved performance over POD.

* Convolution extracts high-level features which are used in encoding.

Potential copyright Issue

K. Lee and K. T. Carlberg, |. Comp. Phys., 2019



Disadvantages of CNN

+ Recall
Cin
yf,i — Gf 2 y(f—l),] * W{/ﬂ,i —+ bbﬂ,l’ . Whel”e 1 S l S COl/tl‘ .
=1

+ Convolution % In 2-D;

a __ (sa+y) ., (L—1—y)
(X* W)y = 2 Xipe5 Wini—1-sy

Y,0

+ Only well defined (in this form) for regular domains!



Disadvantages of CNN

+ How to use CNN on Irregular data’

+ Current strategy is to ignore the problem:
“ Inputs y padded with fake nodes and reshaped to a square.
+ Convolution applied to square-ified input.
+ Yy reassembled at end. Fake nodes ignored.

+ Works surprisingly well

+ But, not very meaningtul.




Graph Convolutional Networks

+ Huge amount of recent work extending convolution to graph
domains.

+ Suppose & = (7, &) is an undirected graph with adjacency
matrix A € RI7 X171

. Let D be the degree matrix d;; = Z aj;.
J
+ The Laplacian of & L =D — A = UAU".

» Columns of U are Fourier modes of &.

+ Discrete FT/IFT: simply multiply by U'/U



Graph Convolutional Networks

+ let y; @l 71 5 R signals defined at nodes.
« Convolution theorem: y, xy, = U (UTyl O, UTyz).
+“ Well defined on any domain without reference to local neighborhoods.

» Learnable spectral filters:  gy(L)y = UgQ(A)UTy where go(A) = Z HkAk.

+ Degree K filters are precisely K-localized on &! (not obvious)



Graph Convolutional Networks

+ let P=D+D"?A+DMD+D* (renormalized Laplacian).
+ Simplified |-localized GCN (Kipf and Welling 2016): X, = 6 (Px,W).
+ Good performance on small-scale classification tasks, but known for oversmoothing.

+« (Chen et al. 2020) proposed GCNZ2, adding residual connection and identity map:

X1 =06 |((1 — ap)Px, + a,x,) (1= I+ B,W,)],

* Ay, [}, — hyperparameters.

“ Equivalent to a degree L polynomial filter with arbitrary coefficients.



+ GCNZ layers encode-

+ Blue layers are fully

+« For ROM: purple

“ Split network idea due to

GC Autoencoder Architecture

decode.

connected.

network simulates low-
dim dynamics.

(FreSCa et al. 2020) skip connection



Iraining Detalls

+ ROM loss used: L(X,f,u) = |X—go f(\z + |h — ﬁ‘z-
* First term reconstructs solution from parameters.

+ Second term ties encoder and prediction network.

# Compression loss: L(X,t,u) = |x—geoh %

+ Used when evaluating only compression/decompression ability.

+ Network trained using mini-batch descent with ADAM optimizer.

“ [raining done on a lattice of values y, testing done on centers.



|-D Inviscid Burger's Equation

+ Let w = W(x, [, l,l) and consider: wmemem Exact
3.0

w, + % (w?) = 0.02¢1,

2.5

=

W(CZ, ta”) — K15 g
w(x,0.p) = 1, 3 20

'y

* Want to predict semi-discrete solution
w = wW(t,u) atany ol
desired parameter configuration.
1.0
0.0 0.2 0.4 0.6 0.8 1.0

Position x



+ Conversely, GCNN and FCNN

[-D Inviscid Burger's: ROM

we— EXxact
+ ROM problem is very regular: not Y FCNN
difficult for network methods. —— GCN
_ 2.5 CNN
+ BEven n = 3 (pictured) is sufficient -
for <1% error with CNN. = -~
32
v

struggle when the latent space Is 15
small. )

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Position x



[-D Inviscid Burger's: Compression

until latent dim 32 (pictured)

+ GCNN almost matches
performance of 2-layer FCNN

(best) with half the memory

+ Note that the CNN used rec

more than 6x the memory o
-CNN.

« CNN still best for compression

dires
- the

Solution w

3.0

2.5

2.0

1.5

1.0

wemes  Exact
FCNN

- GCN

CNN

0.0

0.2 0.4 0.6 0.8 1.0
Position x



|-D Inviscid Burger's: Results

LOSS

A A A A A A A A A,

308 Encoder/ Decoder + Prediction ‘ Encoder/Decoder only
1 Rt,% Size (MB) | Size (MB) |
1o | 0.164 | 0.033
to-* 1.93 1.91
16> 0.336 0.295
o 0.197 0.057
— 1.98 1.93
107 - Oiveile 0.343 0.303
10 0.295 0.147
1 \W 2,08 2.0
t i b\"y\{#&% A&a;lj‘M Aﬁ#%w"u 0377 0319
W
Joo

0
' FONN tran
n
\

wrowwe e Loss pictured for n = 32,

10t n
’
1w n
w-.
W‘
10

w.‘ ' 4 ~> ~- -~ v
2 «o 10 1500 00

+ ROM Errors fluctuate with n —

prediction network has issues.




2-D Parameterized Heat

Solution v: Exact, Reconstructed, Pointwise Error

l/tt . Al/t - () on U o4 a4

u(0,y,1) = — 0.5 ; 1 )

u(1.y. 1) = pt; Cos(y)

u(x,y,0) =0 i i
» Discretizing over grid gives u = u(z, i) .' Il l&::

« Consider
u=ulx,yt,p), U=1[0,1] X[0,2], g € [0.05,0.5] X [#n/2,x]
and solve




% Results shown forn = 10.

+ GCNN has lowest error anc

« CNN Is worst — cheap hacks

2-D Parameterized Heat: Results

Exact GONN ONN FONN

least memory requirement (by

> [ Ox!)

have a cost.

A |

‘\_\\



2-D Parameterized Heat: Results

Encoder /Decoder 4+ Prediction Encoder /Decoder only
NI [ o Time per . Time per
Network | n | RET | RELT. | Size (MB) E h(s) | ™ RETL | REST | Size (MB) Epoch (s)

mmmn- mmm_
296 1397 | 376 133 | /232129 ) 378 131

255 | 348 | 0636 |96 IIEIIEIEE‘I-!I-
32 (230 | 373 4.60 19 32| 234 @ 209 4.57

FCNN 2.65 | 4.25 3.80 3.2 1.61 | 2.31 3.97 32




2-D Parameterized Heat: Results
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Unsteady Navier-Stokes Equations

* Consider the Schafer-Turek

benchmark problem:

u—vAu+V,u+ Vp =1,
V-u=0,
u\t=0=u0.

* Impose 0 boundary conditions
on [,,I',,I's. Do nothing on
| 5. Parabolic inflow on | ;.

___________________________



«» N=10104
*» n =32

“ FCNN

Navier-Stokes Equations: Results

Speed Ju|: Exact, Reconstructed, Pointwise Error

“ Reynolds
number
185.

best on
prediction
problem.




Navier-Stokes Equations: Results

-

-

Enooglcr," Dccgdcr + Prcdx;gtion E'ncodcr,'LDccodcr oul?; |

Network | n | R6,% | Rt2% | Size (MB) g;)";:h"g) n | R&,% | RE% | Size (MB) z;:z:h"g)

GCN 007 | 146 | 0476 |33 [ 17767 | 122 | 0410 |32 |
CNN | 2] 712 | 111 224 210 2 | 11.2 | 17.6 224 190
FCNN 1.62 | 2.87 330 38 1.62 | 2.70 330 38
" GCN 297 | 5.14 | 533 |32 10825 149 | 526 |32
CNN 132 457 | 7.09 232 230 32| 4.61 | 7.24 232 220
. FCNN 1.39 | 2.64 330 38 0.680 | 1.12 330 38
GCN 288 | 496 | 105 |33 0.450 | 0.791 | 104 |33
CNN |64 342 | 5.33 241 270 64 | 2.42 | 3.57 241 260
FCNN 1.45 | 2.64 330 38 0.704 | 1.19 330 37

-




#  Compression

Navier-Stokes Equations: Results

Faact, Pecomutrucoed Svee

N

+ GCNN
matches
FCNN in
accuracy

+ GCNN

memory cost
is >50x less
than FCNN




Conclusion

» Neural networks are exciting new technology which brings together
experts from many domains.

» [here Is plenty of math to be done for ML, and many scientific

applications are enhanced by the use of NNSs.

* YOU can contribute to this areal



1 hank You!



