Anthony Gruber

Calculus for Computer Graphics and Data Science

* Motivation: Why calculus? * Calculus in Artificial Neural Networks * How do they learn? Calculus in Curvature Flows * How does deformation work?

Outline

Animation & Simulation

- * Often want *continuous* change.
- * Calculus is the study of continuous change!

Motivation

Gruber, A. and Aulisa, E. ACM Trans. Graph. (2020) *

Motivation

- Quantitative change must be prescribed.
- * Pictured: solving a *differential equation*.
- (Certain curvature is minimized over time.)

* Gruber, A. and Aulisa, E. ACM Trans. Graph. (2020)

Motivation

- * Consider artificial neural networks (ANNs).
- ANNs change to learn a predefined task.
- Learn by decreasing error as fast as possible.

What is a Neural Network?

- A function approximation machine loosely modeled on biological systems.
- Each layer contains neurons (nodes) with *learnable parameters* (edge weights).
- # Nodes = Width, # Layers = Depth

How do NNs Learn?

- Information flows *forward* from inputs to outputs.
- Outputs produce a *response*, with associated *error*.
- Information flows *backward* through derivative of error.
- Parameters are *updated* accordingly.

lopsi Leyo G W

Hidden Leyer-4 30

Osipsi Layo 6 W

Review: What is a Derivative?

* $f : \mathbb{R} \to \mathbb{R}$ differentiable. Fix $x \in \mathbb{R}$.

* Rate of change: $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$

Ex) $f(x) = \sin x$ around $x = \frac{\pi}{4}$

Review: What is a Derivative?

* $f(x + h) = f(x) + f'(x)h + \mathcal{O}(h^2)$ = $T_x(h) + \mathcal{O}(h^2)$

- * $T_x(h)$ best linear approximation to f at x.
- *f*'(*x*) is slope of tangent line to graph.

Ex) $f(x) = \sin x$ around $x = \frac{\pi}{4}$

Review: What is a Derivative?

- ∗ How can we decrease f?
 ∗ Roll along the tangents
 ∗ Fact: x_{n+1} = x_n − f'(x_n)h
 ∗ (for small h)
- Eventually converges to local minimum.

Ex) $f(x) = \sin x$ around $x = \frac{\pi}{4}$

Gradient Descent

- * Consider $f : \mathbb{R}^n \to \mathbb{R}$.
- * gradient field $\nabla f(\mathbf{x})$ (column vector)
- * The maximum rate of change in f occurs in the direction of ∇f .
- * Therefore, *f* decreases maximally when pushed in the direction of $-\nabla f$.

Video by <u>Jacopo Bertolotti</u> <u>https://commons.wikimedia.org/wiki/File:Gradient_descent.gif</u>

Inside a Neural Network

- * Consider a neural network $\mathbf{y} = \mathbf{f}(\mathbf{x}, \boldsymbol{\theta}).$
 - Depends on inputs x and parameters θ.
- ★ Consider a loss (error) function L(y).
 ★ What is L_θ(y) = ∂L/∂θ(y)?

Inside a Neural Network

- * Components of L_{θ} : sensitivities of loss *L* to each parameter θ^{i} .
- * Chain rule! $L_{\theta} = L'(\mathbf{y})\mathbf{y}_{\theta}$
 - * $L_{\boldsymbol{\theta}} = L_{y^1} y_{\boldsymbol{\theta}}^1 + L_{y^2} y_{\boldsymbol{\theta}}^2 + L_{y^3} y_{\boldsymbol{\theta}}^3$

Neural Network Training

- What does the network do with this information?
- * Value of *L* decreases fastest when θ moves parallel to $-L_{\theta}$.
 - (row version of gradient)
- * Can *update* $\theta \leftarrow \theta t L'(\mathbf{y})\mathbf{y}_{\theta}$ where *t* is the learning rate.

* Consider $y = \sin x + \cos 2x$ * Can we learn it? * Take $x_i \in [0, 2\pi], y_i = \sin x_i + \cos 2x_i$ * Network $f(x, \theta)$ Minimize $L = \sum_{i=1}^{n} |y_i - f(x_i, \theta)|^2$

Example

- * The derivative is inherently linked to *minimization*.
- * Willmore energy:

$$\mathcal{W}^2(\mathbf{X}) = \int_M H^2 \, d\mu_g$$

* How can we minimize such functions?

Graphics Applications

- * What does f'(x) do to the number h?
 - * The map $h \mapsto f'(x)h$ is multiplication!
 - * The derivative $f'(x) : \mathbb{R} \to \mathbb{R}$ dilates h.
- * $f'(x) = 0 \iff f'(x)h = 0$ for all $h \in \mathbb{R}$.

Example: Shortest length

★ Curve **x** : [0,1] → \mathbb{R}^2 .
★ Length functional is

$$\mathscr{L}(\mathbf{x}) = \int_C ds = \int_0^1 |\mathbf{x}'(t)| dt$$

*
$$\mathbf{x}(t, \tau) = \mathbf{x}(t) + \tau \boldsymbol{\varphi}(t)$$

variation of curve.

First Variation of Length

* Want to find **x** where \mathscr{L} is stationary.

* Means

$$\delta \mathscr{L}(\mathbf{x})\boldsymbol{\varphi} = \frac{d}{d\tau}\Big|_{\tau=0} \mathscr{L}(\mathbf{x} + \tau \boldsymbol{\varphi}) = 0$$

- * Must hold for all admissible φ .
- * This is called taking the *first variation* of

Example: Shortest length

* When is \mathscr{L} stationary?

*
$$\frac{d}{d\tau}\Big|_{\tau=0} \mathscr{L}(\mathbf{x} + \tau \boldsymbol{\varphi}) = 0.$$

* If $\varphi(0) = \varphi(1) = 0$, this implies

$$\int_{0}^{1} \kappa \mathbf{N} \cdot \boldsymbol{\varphi} \, dt = 0 \text{ for all } \boldsymbol{\varphi}.$$

Curvature к must be 0!

Derivative of Length Functional

- This shows κ N is the *gradient* of the length.
- * What if we solve $\dot{\mathbf{x}} = -\kappa \mathbf{N}$
 - * Curve-shortening flow!
- * *Fastest way* to decrease length.

Curve-Shortening Flow

Code by Anthony Carapetis: https://github.com/acarapetis/ curve-shortening-demo

What About in 2-D?

- Can you do the same in higher dimensions?
 - * Yes! Mean curvature flow $\dot{\mathbf{X}} = \Delta_g \mathbf{X} = -2H\mathbf{N}.$
- Fastest way to decrease surface area.

Geometry on a Surface

- * How do we measure distances on *M*?
- * We need a *Riemannian metric g*.
- *g* measures the angle
 between tangent
 vectors!

Geometry on a Surface

- * $g_x(\mathbf{u}, \mathbf{v}) = \mathbf{X}'(\mathbf{x})\mathbf{u} \cdot \mathbf{X}'(\mathbf{x})\mathbf{v}$ gives a shape for *M*.
- * Using linearity, $g_{ij} = \mathbf{X}' \partial_i \cdot \mathbf{X}' \partial_j = \mathbf{X}_i \cdot \mathbf{X}_j$

* Then, $g_x(\mathbf{u}, \mathbf{v}) = \sum_{ij} g_{ij} u^i v^j = \mathbf{u}^\top \mathbf{G} \mathbf{v}$

*
$$\mathbf{X}(x_1, x_2) = \begin{pmatrix} x_1 & x_2 & -x_1^2 - x_2^2 \end{pmatrix}^{\top}$$

* $\mathbf{X}'(x_1, x_2) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -2x_1 & -2x_2 \end{pmatrix}$
* $\mathbf{G} = \begin{pmatrix} 1 + 4x_1^2 & 4x_1x_2 \\ 4x_1x_2 & 1 + 4x_2^2 \end{pmatrix}$

Example

What is the Mean Curvature?

- * *H* is an extrinsic measure of how *M* bends in \mathbb{R}^3 .
 - * Depends on how N changes, i.e. $\mathbf{N}': TM \to T\mathbb{S}^2.$
- ✤ Eigenvalues of −N' are the principal curvatures κ_1, κ_2 .
 - * $H = (1/2)(\kappa_1 + \kappa_2).$

What is Mean Curvature Flow?

* Extend $\mathbf{X} = \mathbf{X}_0$ to a variation $\mathbf{X} : M \times \mathbb{R} \to \mathbb{R}^3$, $\mathbf{X} = \mathbf{X}_0 + t \boldsymbol{\varphi}$. * $\boldsymbol{\varphi} : M \to \mathbb{R}^3$ is the velocity field of the variation **X**. * Consider the area functional:

$$\mathscr{A}(\mathbf{X}) = \int_{M} 1 \, d\mu_g \, .$$

* How does *A* change as we change *t* ?

First Variation of Area

* We write
$$\delta \mathscr{A}(\mathbf{X}_0)\boldsymbol{\varphi} = \frac{d}{dt}\Big|_{t=0} \mathscr{A}(\mathbf{X}_0)$$

* Since $d\mu_g = \sqrt{\det \mathbf{G}} \, dA$, one can show

$$\delta \mathscr{A}(\mathbf{X})\boldsymbol{\varphi} = \int_{M} 2H \,\mathbf{N} \cdot \boldsymbol{\varphi} \, d\mu_g$$

* Change in area is proportional to mean curvature!

 $+ t \boldsymbol{\varphi}$).

- Another popular functional for graphics applications. * Willmore energy: $\mathscr{M}^2(\mathbf{X}) = \int_M H^2 d\mu_g$.
- Conformal invariant (hard for analysis)
- * Qualitatively: \mathcal{M}^2 measures roundness.

Willmore Energy

Willmore Flow

- * Need to solve $\dot{\mathbf{X}} \cdot \mathbf{N} = \Delta_g H + 2H(H^2 K)$
- * Suppose *M* is closed. New variable $\mathbf{Y} := \Delta_{\varrho} \mathbf{X}$ (G. Dziuk, 2012).

* Weak definition
$$\int_{M} \mathbf{Y} \cdot \boldsymbol{\psi} + \langle \mathbf{X}' \cdot \boldsymbol{\psi} \rangle$$

- * Willmore flow becomes coupled pair of 2nd-order PDEs for X.
- * (G., Aulisa) Extended ideas to p-Willmore energy.

 $| \mathbf{v}' \rangle_g = 0.$

Problems with Moving Domains

- * Mesh can degenerate!
- * Need some way to stop this...

What about the Mesh?

- * Can consider leastsquares conformal mapping.
- * Map $f: (M, g) \to \mathbb{R}^3$ is *conformal* if it preserves angles.
- * When $f: M \to \mathbb{R}^3$, equiv. to $\exists N$ s.t. $\star df = N \times df$

(Kamberov, Pedit, Pinkall 1996).

* Can minimize integral of $|\star d\mathbf{X} - N \times d\mathbf{X}|^2$ with constraint.

- * Yields leastsquares conformal maps
- * Makes triangulations much nicer.

Results

Trefoil Knot Unwinding

Comparison: p-Willmore

- Volume-constrained flows.
- * Higher p more rounding behavior.
- Can show that p > 2 Willmore minimizers resemble minimal surfaces in some aspects. *
- Gruber, A., Toda M., Tran, H. Ann. Glob. Anal. Geom. (2019).
- Gruber, A., Pampano, A., Toda, M. Ann. Mat. Pura. *Appl.* (2021).

MCF

(0-Willmore)

Willmore flow (2-Willmore)

4-Willmore flow

Influence of the Constraint

Volume preserving 2-Willmore flow

Volume and area preserving 2-Willmore flow

A Problem with LSCM?

- * Not so good for mappings with boundary correspondence.
- * Conformal mappings are too restrictive for this.

Conformal vs. Quasiconformal

- * Must allow bounded shearing distortion.
- * In *quaternionic* setting, this means:

*
$$df^- = \mu df^+$$

- (anticonformal/conformal parts).
- * Conformal iff Beltrami coefficient $\mu = 0.$
- * μ is conjugate-dual to the *Hopf* differential $Q = df^+ \overline{df^-}$.

Comparison: TM vs. LSCM

Computing TM mappings

- * Minimize $\mathcal{QC}(f) = \int_{M} |df^{-} - \mu df^{+}|^{2} d\mu_{g}$ alternatively over f, μ .
 - * 1) Minimize for f given μ .
 - * 2) Compute $\mu = df^{-} (df^{+})^{-1}$.
 - 3) Locally adjust µ, moving it toward TM form (next slide)
 - * Repeat steps 1-3 until convergence.

Why does it work?

* Dirichlet energy w.r.t. any metric decomposes into area functional and conformal distortion.

$$\mathcal{D}_{g}(f) = \int_{M} |df|^{2} = \int_{M} |df^{+}|^{2} - |df^{-}|^{2} + 2\int_{M} |df^{-}|^{2} = \mathcal{A}(f) + 2\mathcal{C}\mathcal{D}(f)$$

* Can show that QC(f) is the conformal part of $\mathcal{D}_{g(\mu)}(f)$. * (Metric $g(\mu)$ induced by QC mapping with BC μ .)

More Examples

Conclusions

Many popular technologies rely on continuous change.
Quantitatively, change must be prescribed.
Often done through minimization of an appropriate function.

* If you want to be a scientist... Pay attention in calculus class!

Thank You!