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Outline

* Motivation: Why calculus?

* Calculus in Artificial Neural Networks

* How do they learn?

+ Calculus in Curvature Flows

+» How does deformation work?



* Animation & Simulation

+ Often want continuous

Motivation

change.

# Calculus is the study of
continuous change!

»  Gruber, A. and Aulisa, E. ACM Trans. Graph. (2020)



* Quantitative change must
be prescribed.

* Pictured: solving a
differential equation.

+ (Certain curvature is
minimized over time.)

Motivation

Gruber, A. and Aulisa, E. ACM Trans. Graph. (2020)



Motivation
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* Consider artificial neural
networks (ANNs).
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What 1s a Neural Network?

* A function approximation machine
loosely modeled on biological
systems.

» Each layer contains neurons (nodes)
with learnable parameters (edge
weights).

* # Nodes = Width, # Layers = Depth
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How do NNs Learn?

Information tlows forward from
inputs to outputs.

Outputs produce a response, with
associated error.

Information flows backward through
derivative of error.

Parameters are updated accordingly.




Review: What is a Derivative?

+ f: R — R differentiable. Fix
X € K. A

* Rate of change: - i - b
o et ) = f) '
ffx)=Ilm—7a- p.

h—0 h Ex) f(x) = sinx around x = 2



Review: What is a Derivative?

= fix+h) = f(x)+ f(x)h + @(hz) '
= T (h) + O(h?) s

= T (h) best linear b S | N
approximation to f at x. '

* f'(x) is slope of tangent line
to graph. Ex) f(x) = sinx around x = %



Review: What is a Derivative?

+ How can we decrease f?
“ Roll along the tangents A

« Fact: x,. =x, —f'(x,)h O~ ; TN - sinf}

+ (for small h) ) -

* HEventually converges to local .

Mo Ex) f(x) = sinx around x = 2



Gradient Descent

« Consider f: R" - R.
« gradient field V f(X) (column vector)

# The maximum rate of change in f
occurs in the direction of Vf.

« Therefore, f decreases maximally
when pushed in the direction of — VY.

Video by Jacopo Bertolotti
s:/ /commons.wikimedia.org / wiki / File:Gradient descent.gif



https://commons.wikimedia.org/wiki/User:Berto
https://commons.wikimedia.org/wiki/File:Gradient_descent.gif

+ Consider a neural network

Inside a Neural Network

y = 1(x,0).

+ Depends on inputs X and
parameters 0.

« Consider a loss (error) function L(y).
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.~ Whatis Ly(y —(Y)
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Inside a Neural Network

)
-«
e ]
+ Components of Ly, : sensitivities of loss @
L to each parameter 0'. : a
. / .
# Chain rule! Ly = L(y)y, ® @
e Ly=L,yi+L,y>+ Ly, o d
X 0 — yl yH + y2 ya + y3 yH .
&




Neural Network ‘T'raining

+ What does the network do with

this information?

« Value of L decreases fastest when :

0 moves parallel to — L, — e
“ (row version of gradient)

« Can update 0 «— 0 — t L'(y)y, -
where 1 is the learning rate.

2.0




Example

+ Consider y = sin x + cos 2x
* Can we learn it?
+ Take x; € [0,27], y; = sinx; + cos 2x;

« Network f(x, )

. Minimize L = Z |yl- - f(%;, 0) | 2
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+ How can we minimize such

Graphics Applications

* The derivative is inherently
linked to minimization.

* Willmore energy:

W(X) = J H*du,

M

functions?



Review: What is a Derivative?

+ What does f'(x) do to the number /?

« The map h + f(x)h is

multiplication!

« The derivative f(x) : R — |
h.

* f(x) =0 < f(x)h =0 forall h € R.

dilates

S (x)h




« Curve X : [0,1] - R~.

Example: Shortest length

* Length functional is

1
ZL(X) = [ ds = J | xX'(2) | dt
C 0 t

» X(t,7) = X(1) + T@(7) O

variation of curve.



First Variation of Length

+ Want to find X where & is stationary. : °

* Means

0L(X)p =—| ZL(X+719)=0. | pa

d |
dr 17=0 \ /
e ws o~ —ts
« Must hold for all admissible @. \ / 05|
. 1.0}

* This is called taking the first variation of
<.




Example: Shortest length

+ When is &£ stationary?

. — Lx+1p)=0.
dt 1:=0
« If @(0) = @(1) = 0, this '
implies
1 t
. [ kKN -@dt =0 forall @. 0
0

2 Curvature x must be 0!



+ What if we solve X = — kN

Derivative of Length Functional

# This shows kN is the gradient of
the length.

* Curve-shortening flow!

* Fastest way to decrease length.




Curve-Shortening Flow

Code by Anthony Carapetis:
https:/ / github.com / acarapetis/
curve-shortening-demo




What About in 2-D?

“ Can you do the same in higher
dimensions?

* Yes! Mean curvature flow

X =AX=-2HN

* Fastest way to decrease surface
area.



+* How do we measure

* We need a Riemannian

(Geometry on a Surface

distances on M?

metric g.

+ g measures the angle
between tangent
vectors!




* g (u,v)=XXu- X'(x)v

+ Then,

(Geometry on a Surface

gives a shape for M.

* Using linearity,
glj — X,al ’ X,a] — Xl ’ X]

g (u,v) = 2 gii u'v =u'Gv
]




Example

)

» X)) = (x, x, —xf—x3) .
1 0

‘ X’(Xl,xz) — O 1

—2x; —2x,

1 +4x?  4dxx
G — 1 1 22
4X1XZ 1 — 4X2 WP %



+» H is an extrinsic measure of how M bends rermtams

What is the Mean Curvature?

af porugps i

3

n |

+ Depends on how N changes, i.e.
N :TM — TS>.

« Eigenvalues of —IN"are the principal
curvatures Ky, K.

+ H=(1/2)(k| + k).




What i1s Mean Curvature Flow?

+ Extend X = X to a variation X : M X R — | N X=X)t+1@.

¢ @ : M — R’ is the velocity field of the variation X.

+ Consider the area functional:

A (X) =[ L du, .
M

+ How does & change as we change 7 ?



First Variaton of Area

d
» We write o0(Xy)@p = E

+ Since du, = \/det G dA, one can show

A (X + 1@).
=0

5AX)p = [ 2HN - @ dy,
M

* Change in area is proportional to
mean curvature!




Willmore Energy

* Another popular functional for graphics applications.

.. Willmore energy: W-(X) = { H? du, -
M

* Conformal invariant (hard for analysis)

+ Qualitatively: W'* measures roundness.




Willmore Flow

+ Need to solve X - N = AgH+ 2H(H? — K)

« Suppose M is closed. New variable Y := A gX
(G. Dziuk, 2012).

.. Weak definition J Y- -y+(X"-y), =0
M

+ Willmore flow becomes coupled pair of 2"-order
PDEs for X.

* (G., Aulisa) Extended ideas to p-Willmore energy.




Problems with Moving Domains

* Mesh can degenerate!

* Need some way to stop this...




What about the Mesh?

+ Can consider least-

squares conformal
mapping.

+ Map f: (M, g) = R’ is
conformal it it preserves
angles.

+ When f: M — R, equiv.
to dNs.t. xdf =NXdf

(Kamberov, Pedit, Pinkall 1996).




* Can minimize
integral of
| % dX — N x dX |

with constraint.

* Yields least-
squares
conformal maps

+ Makes
triangulations
much nicer.




T'retoil Knot Unwinding




Comparison: p-Willmore

v

+ Volume-constrained flows. NCT

(0-Willmore)

“

* Higher p — more rounding
behavior.

# Can show that p > 2 Willmore
minimizers resemble minimal
surfaces in some aspects. *

Willmore flow
(2-Willmore)

Gruber, A., Toda M., Tran, H. Ann. Glob. Anal. Geom.
(2019).
Gruber, A., Pampano, A., Toda, M. Ann. Mat. Pura.
Appl. (2021).

4 Willmore flow




Influence of the Constraint

VA%
74 "J '4 VA

Volume preserving 2-Willmore flow Volume and area preserving 2-Willmore flow



A Problem with LSCM?

“ Not so good for mappings with boundary correspondence.

* Conformal mappings are too restrictive for this.
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Conformal vs. Quasiconformal

* Must allow bounded shearing distortion. df* =

* In quaternionic setting, this means:

o df~ = pdf*

* (anticonformal / conformal parts).

+ Conformal iff Beltrami coefficient
u=20.

« u is conjugate-dual to the Hopf
differential Q = df +$ :



Comparison: TM vs. LSCM

100% A

= LSCM
1 TQCM

80% -

60% -

40% -

20% -

0% -
0.0 0.2 0.4 0.6 0.8
Norm |u|

»  Gruber, A. and Aulisa, E. 2021
(under review)




Computing T'M mappings

+ Minimize

6% () = | 14— ndr* T dy
M
alternatively over f, u.

# 1) Minimize for f given u.

» 2) Compute yu =df~ (df+)_1 .

# 3) Locally adjust y, moving it
toward TM form (next slide)

* Repeat steps 1-3 until convergence.



Why does it work?

* Dirichlet energy w.r.t. any metric decomposes into area functional and
conformal distortion.

9N = | 1P = | 1P = 1d P 2| 1P = a0+ 2890
M M M

» Can show that QE€(f) is the conformal part of & o ﬂ)( 7).

« (Metric g(u) induced by QC mapping with BC x.)



ore Examples

Norm |




Conclusions

* Many popular technologies rely on continuous change.
* Quantitatively, change must be prescribed.

* Often done through minimization of an appropriate function.

“ If you want to be a scientist... Pay attention in calculus class!



Thank You!



