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Outline

❖ Motivation:  Why calculus?

❖ Calculus in Artificial Neural Networks

❖ How do they learn?  

❖ Calculus in Curvature Flows

❖ How does deformation work?



Motivation

❖ Animation & Simulation 

❖ Often want continuous 
change. 

❖ Calculus is the study of 
continuous change!

❖ Gruber, A. and Aulisa, E. ACM Trans. Graph. (2020)



Motivation

❖ Quantitative change must 
be prescribed.

❖ Pictured: solving a 
differential equation.

❖ (Certain curvature is 
minimized over time.)

❖ Gruber, A. and Aulisa, E. ACM Trans. Graph. (2020)



Motivation

❖ Consider artificial neural 
networks (ANNs).

❖ ANNs change to learn a 
predefined task.

❖ Learn by decreasing error 
as fast as possible.
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What is a Neural Network?

• A function approximation machine 
loosely modeled on biological 
systems.

• Each layer contains neurons (nodes) 
with learnable parameters (edge 
weights).

• # Nodes = Width,   # Layers = Depth



How do NNs Learn?

• Information flows forward from 
inputs to outputs.

• Outputs produce a response, with 
associated error.

• Information flows backward through 
derivative of error.

• Parameters are updated accordingly.



Review:  What is a Derivative?

❖    differentiable.  Fix  
. 

❖ Rate of change:    
 

.

f : ℝ → ℝ
x ∈ ℝ

f′ (x) = lim
h→0

f(x + h) − f(x)
h Ex)    around  f(x) = sin x x = π

4



Review:  What is a Derivative?

❖               

❖  best linear 
approximation to    at  .

❖  is slope of tangent line 
to graph.

f(x + h) = f(x) + f′ (x)h + &(h2)
= Tx(h) + &(h2)

Tx(h)
f x

f′ (x)
Ex)    around  f(x) = sin x x = π

4



Review:  What is a Derivative?

❖ How can we decrease  

❖ Roll along the tangents

❖ Fact:  

❖ (for small h)

❖ Eventually converges to local 
minimum.

f ?

xn+1 = xn − f′ (xn)h

Ex)    around  f(x) = sin x x = π
4



Gradient Descent

❖ Consider  .

❖ gradient field  (column vector)

❖ The maximum rate of change in   
occurs in the direction of .

❖ Therefore,    decreases maximally 
when pushed in the direction of .

f : ℝn → ℝ
∇f(x)

f
∇f

f
−∇f

Video by Jacopo Bertolotti
https://commons.wikimedia.org/wiki/File:Gradient_descent.gif

https://commons.wikimedia.org/wiki/User:Berto
https://commons.wikimedia.org/wiki/File:Gradient_descent.gif


Inside a Neural Network

❖ Consider a neural network  
.

❖ Depends on inputs  and 
parameters .

❖ Consider a loss (error) function   . 

❖ What is  ?

y = f(x, θ)
x

θ

L(y)

Lθ(y) = ∂L
∂θ

(y)



Inside a Neural Network

❖ Components of   :  sensitivities of loss 
 to each parameter .

❖ Chain rule!   

❖

Lθ
L θi

Lθ = L′ (y)yθ

Lθ = Ly1 y1
θ + Ly2 y2

θ + Ly3 y3
θ



Neural Network Training

❖ What does the network do with 
this information?

❖ Value of  decreases fastest when 
 moves parallel to .

❖ (row version of gradient)

❖ Can update   
where  is the learning rate.

L
θ −Lθ

θ ← θ − t L′ (y)yθ
t



Example

❖ Consider  

❖ Can we learn it?

❖ Take ,   

❖ Network  

❖
Minimize   

y = sin x + cos 2x

xi ∈ [0,2π] yi = sin xi + cos 2xi

f(x, θ)

L = ∑
i

yi − f(xi, θ)
2



Graphics Applications

❖ The derivative is inherently 
linked to minimization.

❖ Willmore energy: 
 

❖ How can we minimize such 
functions?

*2(X) = ∫M
H2 dμg



Review:  What is a Derivative?

❖ What does   do to the number 

❖ The map    is 
multiplication!

❖ The derivative   dilates 
.

❖        for all  .

f′ (x) h?
h ↦ f′ (x)h

f′ (x) : ℝ → ℝ
h

f′ (x) = 0 ⟺ f′ (x)h = 0 h ∈ ℝ

h

f′ (x)h



Example: Shortest length

❖ Curve  .

❖ Length functional is  
 

❖   
variation of curve.

x : [0,1] → ℝ2

ℒ(x) = ∫C
ds = ∫

1

0
|x′ (t) | dt

x(t, τ) = x(t) + τ φ(t)



First Variation of Length

❖ Want to find  where  is stationary.

❖ Means 

.

❖ Must hold for all admissible .

❖ This is called taking the first variation of 
.

x ℒ

δℒ(x)φ = d
dτ τ=0

ℒ(x + τ φ) = 0

φ

ℒ



Example: Shortest length
❖ When is  stationary?

❖ .

❖ If , this 
implies

❖
  for all .

❖ Curvature  must be 0!

ℒ
d
dτ τ=0

ℒ(x + τ φ) = 0

φ(0) = φ(1) = 0

∫
1

0
κ N ⋅ φ dt = 0 φ

κ



Derivative of Length Functional

❖ This shows  is the gradient of 
the length.

❖ What if we solve  

❖ Curve-shortening flow!

❖ Fastest way to decrease length.

κ N

·x = − κ N



Curve-Shortening Flow

Code by Anthony Carapetis:   
https://github.com/acarapetis/

curve-shortening-demo



What About in 2-D?

❖ Can you do the same in higher 
dimensions?

❖ Yes!  Mean curvature flow  
.

❖ Fastest way to decrease surface 
area.

·X = ΔgX = − 2HN



Geometry on a Surface 

❖ How do we measure 
distances on 

❖ We need a Riemannian 
metric .

❖  measures the angle 
between tangent 
vectors!

M?

g

g



Geometry on a Surface 

❖   
gives a shape for .

❖ Using linearity,   
 

❖ Then,  

gx(u, v) = X′ (x)u ⋅ X′ (x)v
M

gij = X′ ∂i ⋅ X′ ∂j = Xi ⋅ Xj

gx(u, v) = ∑
ij

gij uivj = u⊤Gv



Example

❖ .

❖

❖

X(x1, x2) = (x1 x2 −x2
1 − x2

2)⊤

X′ (x1, x2) =
1 0
0 1

−2x1 −2x2

G = (1 + 4x2
1 4x1x2

4x1x2 1 + 4x2
2)



What is the Mean Curvature?

❖  is an extrinsic measure of how  bends 
in .

❖ Depends on how  changes, i.e. 
.

❖ Eigenvalues of  are the principal 
curvatures .

❖ .

H M
ℝ3

N
N′ : TM → T12

−N′ 

κ1, κ2

H = (1/2)(κ1 + κ2)



What is Mean Curvature Flow?

❖ Extend  to a variation  ,  .

❖   is the velocity field of the variation .

❖ Consider the area functional: 
 

 .

❖ How does  change as we change  ? 

X = X0 X : M × ℝ → ℝ3 X = X0 + t φ

φ : M → ℝ3 X

3(X) = ∫M
1 dμg

3 t



First Variation of Area

❖ We write  .

❖ Since ,  one can show 
 

❖ Change in area is proportional to  
mean curvature!

δ3(X0)φ = d
dt t=0

3(X0 + tφ)

dμg = det G dA

δ3(X)φ = ∫M
2H N ⋅ φ dμg



Willmore Energy

❖ Another popular functional for graphics applications.

❖
Willmore energy:    .

❖ Conformal invariant (hard for analysis)

❖ Qualitatively:  measures roundness.

*2(X) = ∫M
H2 dμg

*2



Willmore Flow
❖ Need to solve  

❖ Suppose  is closed.  New variable    
(G. Dziuk, 2012).

❖
Weak definition .

❖ Willmore flow becomes coupled pair of -order 
PDEs for .

❖ (G., Aulisa) Extended ideas to p-Willmore energy.

·X ⋅ N = ΔgH + 2H(H2 − K)

M Y := ΔgX

∫M
Y ⋅ ψ + ⟨X′ ⋅ ψ′ ⟩g = 0

2nd

X



Problems with Moving Domains

❖ Mesh can degenerate!  

❖ Need some way to stop this…



What about the Mesh?
❖ Can consider least-

squares conformal 
mapping.

❖ Map    is 
conformal if it preserves 
angles.

❖ When  , equiv. 
to  s.t.    
(Kamberov, Pedit, Pinkall 1996).

f : (M, g) → ℝ3

f : M → ℝ3

∃ N ⋆ df = N × df



Results
❖ Can minimize 

integral of 
 

with constraint.

❖ Yields least-
squares 
conformal maps

❖ Makes 
triangulations 
much nicer.

| ⋆ dX − N × dX |2



Trefoil Knot Unwinding



Comparison: p-Willmore

❖ Volume-constrained flows.

❖ Higher p — more rounding 
behavior.

❖ Can show that p > 2 Willmore 
minimizers resemble minimal 
surfaces in some aspects. *

* Gruber, A., Toda M., Tran, H.  Ann. Glob. Anal. Geom. 
(2019).  

* Gruber, A., Pampano, A., Toda, M.  Ann. Mat. Pura. 
Appl. (2021).



Influence of the Constraint

Volume preserving 2-Willmore flow Volume and area preserving 2-Willmore flow



A Problem with LSCM?

❖ Not so good for mappings with boundary correspondence.

❖ Conformal mappings are too restrictive for this.



Conformal vs. Quasiconformal
❖ Must allow bounded shearing distortion.

❖ In quaternionic setting, this means:

❖  

❖  (anticonformal/conformal parts).

❖ Conformal iff Beltrami coefficient
.

❖  is conjugate-dual to the Hopf 
differential  .

df − = μ df +

μ = 0
μ

Q = df +df −

df ± = 1
2 (df ∓ N ⋆ df)



Comparison: TM vs. LSCM

❖ Gruber, A. and Aulisa, E. 2021 
(under review)



Computing TM mappings

❖ Minimize 

   

alternatively over  .

❖ 1)  Minimize for    given .

❖ 2)  Compute   .

❖ 3)  Locally adjust , moving it 
toward TM form (next slide) 

❖ Repeat steps 1-3 until convergence.

9:( f ) = ∫M
|df − − μ df + |2 dμg

f, μ

f μ

μ = df − (df +)−1

μ



Why does it work?

❖ Dirichlet energy w.r.t. any metric decomposes into area functional and 
conformal distortion. 
 
 

❖ Can show that  is the conformal part of .

❖ (Metric  induced by QC mapping with BC .)

9:( f ) ;g(μ)( f )

g(μ) μ

;g( f ) = ∫M
|df |2 = ∫M

|df + |2 − |df − |2 + 2∫M
|df − |2 = 3( f ) + 2:;( f )



More Examples



Conclusions

❖ Many popular technologies rely on continuous change.

❖ Quantitatively, change must be prescribed.

❖ Often done through minimization of an appropriate function.

❖ If you want to be a scientist… Pay attention in calculus class!



Thank You!


