AnthOny Gruber Joint work with: M. Gunzburger, L. Ju, Z. Wang (FSU & UofSC)

Neural Network Architectures for Data
Compression and Reduced-Order Modeling

Full-order Model

« FOM: X(t,p) = f (£, x(2,p),), x(O.p) = X ().

“ p 1s vector of parameters.

+ Dimension of X can be huge — on the order of 10* to 10°.

« Typically solved with time integrator e.g. a Runge-Kutta method.
* Recently, neural networks used instead.

« Difficult due to high dimensionality.

+ Standard is to encode -> solve -> decode.

Reduced Order Modeling

* High-fidelity PDE simulations are
expensive.

+ Semi-discretization creates a lot of
dimensionality.

Potential copyright Issue

* Can we get good results without solving
the full PDE?

“ ThlS Wa}f, SOIVlng 1S IOW-dlmenSIOnal, Image: https:/ /mpas-dev.github.io/ocean/ocean.html

https://mpas-dev.github.io/ocean/ocean.html

Ildea behind ROM

+ Do we really need all 10° dimensions?
« No, if (t,u) = X(t,) is unique.

+ & = {x(t,p) | t € [0,T],p € D} C RY,
solution manifold.

+ (n, + 1) dimensions is enough for

loss-less representation of &.

+ How can we recover & efficiently?

Reduced-order Model

« Consider finding X s.t. X® X =goX

« (t,p) = X(t,p) € R" where n < N.

« If n > n,+ 1, image of X is potentially “big enough” to encode x.

N

a decoder function.

» g R > |

* e.g. linear projection; NN autoencoder.

Reduced-order Model

+ Suppose X obeys same dynamics as X.
» Residual [|X — f(X)||? is minimized when:

- ﬁ(taﬂ) == g’(ﬁ)"’f (ta g(ﬁ)aﬂ)a ﬁ(oaﬂ) = h(XO(ﬂ))a

« Here g'(X)™ is the pseudoinverse of g'.

« h:RY > R" left inverse of g

+ ODE of size N converted to ODE of size n.

« “Hard part” is computing the decoder function g.

Proper Orthogonal Decomposition (POD)

* Most popular ROM (until recently) is proper orthogonal decomposition.

%o . . . N 7 1
« Carry out PCA on solution snapshots {u(t], X, ﬂ]) }].=1 . generate matrix S.

s SVB-N— 113V

« First n cols of U (say A) — reduced basis of POD modes.

+ Instead of X = f(x), can then solve X = ATf(AR).

* Totally linear procedure — good and bad.

POD vs Neural Network

+ POD works well until EWs of X

decay slowly.

* Even many modes cannot
reliably capture behavior.

“ Conversely, FCNN/CNN
captures patterns quite well.

* Are all NNs equal for this purpose?

Potential copyright Issue

Lee, K. and Carlberg, K. . Comp. Phys. (2019)

* Most obvious choice is FCNN.

Review: Fully Connected Network

< Giveny=y()€ | NOand ISKSL/

& yL — TL o TL—I O a2 Tl(y())

')

2y — Tf(yzf—l) = e (nyf—l T bf)’

. : ’
!
]
5, \ ’
N)
'
" 3 : ») ’
1 !
v
J
g y : 5 ’ ’)
. J ! N\ 1 ’ 3 .
’ . :
. »
’ “
’ »

+* (W_,,b,) are learnable parameters.

o 6 iS 61ement-WiSE aCtivatiOn funCtiOIl. Input Layer € R” Hidden Layer € R® Output Layer € R

Review: Fully Connected Network

* FCNN is most expressive, but prone
to overfitting and difficult to train.

* Also requires a large amount of
memory due to overparametrization.

4)

|
)
3 : : ’ : : .
! " ! ’ \

’ »)
]

! .,

:

“ First used for ROM by (Milano and
Koumoutsakos 2002).

)
:
.)
:
) 3) . | ’
)

® Llne dI' ver SlOIl eqU_lvaleIlt tO POD . Input Layer € R Hidden Layer € R® Output Layer € R

CNN Model Order Reduction

* Lee and Carlberg (2019) used a convolutional neural network (CNN).

* Demonstrated greatly improved performance over POD. Less memory cost than FCNN.

* Convolution extracts high-level features which are used in encoding.

Potential copyright Issue

K. Lee and K. T. Carlberg, |. Comp. Phys., 2019

Disadvantage of GNN

+ Recall:

Cin
ybﬂ,l - O-f Z y(l/ﬂ—l),j * W]f,l - bf,l - Where 1 S l S COl/tt :
j=1

+ Convolution % in 2-D:

o Sectg e ()
X xWp = 2% spe0) Wirt-1-y

7,0

“ Only well defined (in this form) for regular domains!

Disadvantage of GNN

* How to use CNN on irregular data?

* Current strategy is to ignore the problem:

« inputs y padded with fake nodes and reshaped to a square.
* Convolution applied to square-ified input.

+ y reassembled at end. Fake nodes ignored.

* Works surprisingly well!

O
But, not very meaningful. N

Graph Convolutional Networks

+ Huge amount of recent work extending convolution to graph
domains.

+ € = (7, &) undirected graph with adj. matrix A € R7 XI71,
D the degree matrix d;; = Z a;;.

J
« The Laplacianof &: L =D — A = UAU'. i
+» Columns of U are Fourier modes of €.
+ Discrete FT/IFT: simply multiply by U'/U.

Graph Convolutional Networks

+ y; g signals at nodes.
» Convolution theorem: y, xy, = U (UTy1 © UTyz).
* Well defined on any domain without reference to local neighborhoods.

» Learnable spectral filters: g4(L)y = Ug,(A)U'y where g,(A) = 2 6, A*

« Degree K filters are precisely K-localized on &! (not obvious)

Graph Convolutional Networks

« Multiplication with Fourier basis is too expensive.
« (Defferard et al. 2016) Use Chebyshev polynomial filters.

* Leads to the propagation rule:

=5]
Xp; =6z |), W Xo_py i+ by,
j=1

- Wj gg(L) Z 7 lek(L) where L is rescaled Laplacian.

« 1 <k < K is a user-defined choice — leads to K-hop aggregation.

Graph Convolutional Networks

+ Let P=D+ D "2A+DMD+ID)"? (added self-loops).
« Simplified 1-localized GCN (Kipf and Welling 2016): X,,; =06 (ﬁXfo).
“ Good performance on small-scale classification tasks, but known for oversmoothing.

(Chen et al. 2020) proposed GCNZ2, adding residual connection and identity map:

Xf+1 — O l((l == abp)IBXf = anO) ((1 e ﬁf)l =1 ﬁfo)] ;
“ Ay, f,— hyperparameters.

« Equivalent to a degree L polynomial filter with arbitrary coefficients.

GC Autoencoder Architecture

* GCN2 layers encode-
decode.

* Blue layers are fully
connected.

* For ROM: purple
network simulates low-
dim dynamics.

« Split network idea due
to (Fresca et al. 2020).

: : I I ROurt
Rnf*N

XE Ry s

. .

—~
~—_

skip connection

Experimental Details

* Want to compare performance of GCAE, CAE, FCAE for ROM applications.

+ Evaluation based on two criteria:

“ Pure reconstruction ability (compression problem).

“ Ability to predict new solutions given parameters (prediction problem).
+ Prediction loss used: L(X,f,u) = |X—goX |2 + |h—X ‘2-

« Compression loss: L(X,t,u) = |X—geh e

“ Network trained using mini-batch descent with ADAM optimizer.

1-D Inviscid Burger’s Equation

+ Let w = w(x, t,u) and consider: -
(x, 1,) = Exact

w, + % (w?) = 0.02¢",

W(Cl, ta”) = ,ula
w(x,0.u) = 1,

7o

2.0°

Solution w

* Want to predict semi-discrete solution
W = W(t,u) at any
desired u € [2,3] X [0.015,0.030].

§ S

e -

0.0 0.2 0.4 0.6 0.8 1.0
Position x

Architecture Comparison

layer | input size | kernel size | stride | padding | output size | activation
Samples of size (256,1) are reshaped to size (1, 16, 16).
1-C (1, 16, 16) 5XH 1 SAME (8, 16, 16) ELU
2-C (8, 16, 16) 5XH 2 SAME (16, 8, 8) ELU
3-C (16, 8, 8) 5XH 2 SAME (32, 4, 4) ELU
4-C (32, 4, 4) 5XH 2 SAME (64, 2, 2) ELU
Samples of size (64, 2, 2) are flattened to size (256).
1-FC 256 reduced dim ELU
End of encoding layers. Beginning of decoding layers.
2-FC | reduced dim 256 ELU
Samples of size (256) are reshaped to size (64, 2, 2).
1I-TC | (64, 2, 2) 5XH 2 SAME (64, 4, 4) ELU
2-TC | (64, 4, 4) 5XH 2 SAME (32, 8, 8) ELU
3-TC | (32, 8, 8) 5XH 2 SAME (16, 16, 16) ELU
4-TC | (16, 16, 16) 5XH 1 SAME (1, 16, 16) ELU
Samples of size (1, 16, 16) are reshaped to size (256, 1).

* CNN (left), GCNN (right)

+ FCNN 1is 2+2 layers, neurons 256, 64, n.

layer | input size | kernel size | @ | € | output size | activation
1-C (N,nf) ngxng |02]|L5 (N,ny) ReLU
N,;-C N,ng ng X Ny 0.2 | 1.5 (N,ny) ReLU
Samples of size (IN,ny) are flattened to size (ny * N).
1-FC nfgx N n Identity
End of encoding layers. Beginning of decoding layers.
2-FC n ngx N Identity
Samples of size (ns x N) are reshaped to size (IN,ny).
1-TC (N,nf) ng X ng 0.2 |15 (N,ny) ReLU
Ni-TC | (N,ny) ngxng |02]15 (N,ny) ReLU
End of decoding layers. Prediction layers listed below.
3-FC n,+1 50 ELU
4-FC 50 50 ELU
11-FC 50 n Identity

1-D Inviscid Burger’s Equation

“ Prediction problem is not
difficult for established
methods.

+ Even n = 3 (pictured) is
sufficient for <1% error with
CNN.

* Conversely, GCNN and FCNN

struggle when the latent space
is small.

Solution w

S

Zird

PALE

i P

L0

ol

s FXacCt
FCNN

— GCN
CNN

0.0

0.2

0.4 0.6
Position x

0.8

1.0

+ Note that the CNN used

1-D Inviscid Burger’s Equation: Compression

* CNN still best for compression 3.0,
until latent dim 32 (pictured)

+ (GCNN almost matches =

performance of 2-layer FCNN
(best) with half the memory.

2:5):

Solution w

i B4o 7

requires more than 6x the
memory of the FCNN.

150

0.0 0.2 0.4 0.6 0.8 1.0
Position x

107!
1072
103
10~
L] g
107°

1071
102

1-D Inviscid Burger’s Equation: Results

GCNN train

=== (GCNN valid

2000

3500

4000

CNN train
=== CNN valid

Encoder/Decoder + Prediction Encoder/Decoder only
Network | n Rel% REQ% Size (MB) n REl% Rez% Size (MB)
GCN 441 | 8.49 0.164 2.54 | 5.31 0.033
CNN 3 | 0.304 | 0.605 1.93 3 | 0.290 | 0.563 1.91
FCNN 1.62 | 3.29 0.336 0.658 | 1.66 0.295
GCN 208 | 3.73 0.197 0.706 | 1.99 0.057
CNN |10 0.301 | 0.630 1.98 10 | 0.215 | 0.409 1.93
FCNN 0.449 | 1.15 0.343 0.171 | 0.361 0.303
GCN 2.09 | 4.17 0.295 0.087 | 0.278 0.147
CNN |32 0.350 | 0.675 2.08 32 | 0.216 | 0.384 2.03

Loss

E ‘WMWUUW‘M MMAW’W MMWW& M%MWM FCNN 0.530 | 1303 | 0377 | | 0.098 [0.216 | 0.319

107°

0 100 200

FCNN train

-1
5 | -== FCNN valid

; + Loss pictured for n = 32.

10—

ROM Errors fluctuate with n —
prediction network has issues.

10°°

0 500 1000 1500 2000

Epoch

2-D Parameterized Heat Equation

Solution u: Exact, Reconstructed, Pointwise Error

GCNN

e Consider
e v iur =10 11%[02] e |0:05.05] % |n/2.7]
and solve
u,—Au=0 onU
u(0,y,1) = —0.5

u(1,y, 1) = py cos(p,y)
u(x,y,0) =0
 Discretizing over (stretched) grid gives u = u(z, p). Ii

0.4
0.2
0.0
-0.2
-0.4

0.4
0.2
0.0
—):-2
-0.4

0.040
0.035
0.030
0.025
0.020
0.015
0.010
0.005

0.000

i

06
04
0.01

0.4

0.0

-0.2

CNN
0.2
4

0.07

0.05

0.03

0.02

0.00

FCNN
2
4
04
0.03
0.02
0
0.00

2-D Parameterized Heat Equation: Results

\) \/

+ Results shown for n = 10. \‘/

+ GCNN has lowest error and

57 ‘

least memory requirement ,
(by >1.()x!) /\‘/ \‘)
\/" \/"

r—'

4 4
N4 N

“ CNN is worst — cheap
hacks have a cost.

2-D Parameterized Heat E.quation: Results

Encoder/Decoder + Prediction

Encoder/Decoder only

Network | n | Rt,:% | R63% | Size (MB) g;ngshpg) n | R,% | R02% | Size (MB) E;Z‘ihpg)
GCN 7.19 | 9.21 0.132 | 9.5 6.96 | 9.21 | 0.0659 |9.2
CNN | 3| 326 | 458 [3.64 18 3 | 3.36 | 3.81 3.62 18
FCNN | 475 | 619 | 374 |33 422 | 569 | 372 |31
GCN 2.87 | 382 | 0.253 |9.6 206 | 285 | 0.18 |94
CNN |10 | 3.07 | 4.38 3.87 18 10 | 245 | 2.90 3.85 18
FCNN 2.96 | 3.97 3.76 3.3 2.32 | 2.92 3.73 3.1
GCN 2.55 | 3.48 0.636 | 9.6 1.05 | 1.91 0.564 | 9.2
CNN |32 2.30 | 3.73 4.60 19 32 | 2.34 | 2.01 4.57 18
FCNN 2.65 | 4.25 | 3.80 3.2 1.61 | 231 | 3.77 3.2

2-D Parameterized Heat E.quation: Results

Errors

0.04

0.07 0.06
0.03 VY 0.05
Ll 0.04
0.04
0.02 .
0.03
0.01 0.02 0.02
001 0.01
0.00 0.00 0.00

Unsteady Navier-Stokes Equations

+ Consider the Schafer-Turek

benchmark problem: 0.2

u—vAu+V,u+ Vp =H{,

V-u=0,
u|_,=u.
* Impose 0 boundary conditions e T

on [,,I',,I's. Do nothing on
| 5. Parabolic inflow on [.

+ N=10104
=

+ FCNN

Navier-Stokes Equations: Results

Speed |ul|: Exact, Reconstructed, Pointwise Error
CNN

* Reynolds
number
185.

best on
prediction
problem.

Navier-Stokes Equations: Results

Encoder/Decoder + Prediction

Encoder/Decoder only

Network | n | R6% | RE2% | Size (MB) g;rgghpg) n | RL% | R6% | Size (MB) gggshpg)
GCN 9.07 14.6 0.476 33 7.67 12.2 0.410 32
CNN 2 7.12 11.1 224 210 2 11.2 17.6 224 190
FCNN 1.62 2.87 330 38 1.62 2.70 330 38
GCN 2.97 n.14 0.33 32 0.825 | 1.49 0.26 32
CNN 32 | 4.57 7.09 232 230 32 | 4.61 7.24 232 220
FCNN 1.39 2.64 330 38 0.680 | 1.12 330 38
GCN 2.88 4.96 10.5 30 0.450 | 0.791 10.4 30
CNN 64 | 3.42 D3 241 270 64 | 2.42 3.07 241 260
FCNN 1.45 2.64 330 38 0.704 | 1.19 330 37

Compression

Navier-Stokes Equations: Results

Exact, Reconstructed, Error

+ GCNN
matches
FCNN in
accuracy

+ GCNN

memory cost
is >50x less
than FCNN

Conclusions

* Standard CNN is not always the best!

* Bven fully connected architectures are better in some cases.
“ Graph CNN operations can be useful for ROM.

“ At least, if the latent space is not too small.

* Would be interesting to combine GCNN with Newton/quasi-Newton.

Thank You!

