
Anthony Gruber

Neural Network Architectures for Data
Compression and Reduced-Order Modeling

Joint work with: M. Gunzburger, L. Ju, Z. Wang (FSU & UofSC)

Full-order Model

❖ FOM:

❖ is vector of parameters.

❖ Dimension of can be huge — on the order of to .

❖ Typically solved with time integrator e.g. a Runge-Kutta method.

❖ Recently, neural networks used instead.

❖ Difficult due to high dimensionality.

·x(t, μ) = f (t, x(t, μ), μ), x(0,μ) = x0(μ) .

μ

x 104 106

Reduced Order Modeling
❖ High-fidelity PDE simulations are

expensive.

❖ Semi-discretization creates a lot of
dimensionality.

❖ Can we get good results without solving
the full PDE?

❖ Standard is to encode -> solve -> decode.

❖ This way, solving is low-dimensional. Image: https://mpas-dev.github.io/ocean/ocean.html

Potential copyright issue

https://mpas-dev.github.io/ocean/ocean.html

Idea behind ROM

❖ Do we really need all dimensions?

❖ No, if is unique.

❖
solution manifold.

❖ () dimensions is enough for
loss-less representation of .

❖ How can we recover efficiently?

106

(t, μ) ↦ x(t, μ)

𝒮 = {x(t, μ) | t ∈ [0,T], μ ∈ D} ⊂ ℝN,

nμ + 1
𝒮

𝒮

Reduced-order Model

❖ Consider finding s.t.

❖ where .

❖ If , image of is potentially “big enough’’ to encode .

❖ a decoder function.

❖ e.g. linear projection; NN autoencoder.

x̃ x ≈ x̃ = g ∘ x̂

(t, μ) ↦ x̂(t, μ) ∈ ℝn n ≪ N

n ≥ nμ + 1 x̂ x

g : ℝn → ℝN

Reduced-order Model
❖ Suppose obeys same dynamics as .

❖ Residual is minimized when:

❖

❖ Here is the pseudoinverse of .

❖ left inverse of .

❖ ODE of size converted to ODE of size .

❖ “Hard part” is computing the decoder function .

x̃ x

∥ ·̃x − f(x̃)∥2

·x̂(t, μ) = g′ (x̂)+f (t, g(x̂), μ), x̂(0,μ) = h(x0(μ)),

g′ (x̂)+ g′

h : ℝN → ℝn g

N n

g

Proper Orthogonal Decomposition (POD)

❖ Most popular ROM (until recently) is proper orthogonal decomposition.

❖ Carry out PCA on solution snapshots : generate matrix .

❖ SVD: .

❖ First n cols of (say) — reduced basis of POD modes.

❖ Instead of , can then solve .

❖ Totally linear procedure — good and bad.

{u(tj, x, μj)}N
j=1 S

S = UΣV

U A
·x = f(x) ·x̂ = A+f(Ax̂)

POD vs Neural Network

❖ POD works well until EWs of
decay slowly.

❖ Even many modes cannot
reliably capture behavior.

❖ Conversely, FCNN/CNN
captures patterns quite well.

❖ Are all NNs equal for this purpose?

Σ

Lee, K. and Carlberg, K. J. Comp. Phys. (2019)

Potential copyright issue

Review: Fully Connected Network

❖ Most obvious choice is FCNN.

❖ Given and ,

❖

❖

❖ () are learnable parameters.

❖ is element-wise activation function.

y = y0 ∈ ℝN0 1 ≤ ℓ ≤ L

yL = TL ∘ TL−1 ∘ . . . ∘ T1(y0)

yℓ = Tℓ(yℓ−1) = σℓ (Wℓyℓ−1 + bℓ),

Wℓ, bℓ

σ

Review: Fully Connected Network

❖ FCNN is most expressive, but prone
to overfitting and difficult to train.

❖ Also requires a large amount of
memory due to overparametrization.

❖ First used for ROM by (Milano and
Koumoutsakos 2002).

❖ Linear version equivalent to POD.

CNN Model Order Reduction
❖ Lee and Carlberg (2019) used a convolutional neural network (CNN).

❖ Demonstrated greatly improved performance over POD. Less memory cost than FCNN.

❖ Convolution extracts high-level features which are used in encoding.

K. Lee and K. T. Carlberg, J. Comp. Phys., 2019

Potential copyright issue

Disadvantage of CNN

❖ Recall:

 where .

❖ Convolution in 2-D:

❖ Only well defined (in this form) for regular domains!

yℓ,i = σℓ

Cin

∑
j=1

y(ℓ−1),j ⋆ Wj
ℓ,i + bℓ,i , 1 ≤ i ≤ Cout

⋆
(x ⋆ W)α

β = ∑
γ,δ

x(sα+γ)
(sβ+δ) w(L−1−γ)

(M−1−δ),

Disadvantage of CNN
❖ How to use CNN on irregular data?

❖ Current strategy is to ignore the problem:

❖ inputs padded with fake nodes and reshaped to a square.

❖ Convolution applied to square-ified input.

❖ reassembled at end. Fake nodes ignored.

❖ Works surprisingly well!

❖ But, not very meaningful.

y

ỹ

Graph Convolutional Networks

❖ Huge amount of recent work extending convolution to graph
domains.

❖ undirected graph with adj. matrix .

❖
 the degree matrix .

❖ The Laplacian of : .

❖ Columns of are Fourier modes of .

❖ Discrete FT/IFT: simply multiply by .

𝒢 = (𝒱, ℰ) A ∈ ℝ|𝒱|×|𝒱|

D dii = ∑
j

aij

𝒢 L = D − A = UΛU⊤

U 𝒢

U⊤/U

Graph Convolutional Networks

❖ signals at nodes.

❖ Convolution theorem: .

❖ Well defined on any domain without reference to local neighborhoods.

❖ Learnable spectral filters: where .

❖ Degree filters are precisely -localized on ! (not obvious)

yi : ℝ|𝒱| → ℝ

y1 ⋆ y2 = U (U⊤y1 ⊙ U⊤y2)

gθ(L)y = Ugθ(Λ)U⊤y gθ(Λ) = ∑ θkΛk

K K 𝒢

Graph Convolutional Networks
❖ Multiplication with Fourier basis is too expensive.

❖ (Defferard et al. 2016) Use Chebyshev polynomial filters.

❖ Leads to the propagation rule:

❖
 where is rescaled Laplacian.

❖ is a user-defined choice — leads to -hop aggregation.

xℓ,i = σℓ

Cin

∑
j=1

Wj
ℓ,ix(ℓ−1),j + bℓ,i ,

Wj
ℓ,i = (gθ(L))j

ℓ,i
= ∑

k

θ j
ℓ,kiTk(L̃) L̃

1 ≤ k ≤ K K

Graph Convolutional Networks
❖ Let (added self-loops).

❖ Simplified 1-localized GCN (Kipf and Welling 2016): .

❖ Good performance on small-scale classification tasks, but known for oversmoothing.

❖ (Chen et al. 2020) proposed GCN2, adding residual connection and identity map:

❖ — hyperparameters.

❖ Equivalent to a degree L polynomial filter with arbitrary coefficients.

P̃ = (D + I)−1/2(A + I)(D + I)−1/2

xℓ+1 = σ (P̃xℓWℓ)

xℓ+1 = σ [((1 − αℓ)P̃xℓ + αℓx0) ((1 − βℓ)I + βℓWℓ)],

αℓ, βℓ

GC Autoencoder Architecture
❖ GCN2 layers encode-

decode.

❖ Blue layers are fully
connected.

❖ For ROM: purple
network simulates low-
dim dynamics.

❖ Split network idea due
to (Fresca et al. 2020). skip connection

Experimental Details
❖ Want to compare performance of GCAE, CAE, FCAE for ROM applications.

❖ Evaluation based on two criteria:

❖ Pure reconstruction ability (compression problem).

❖ Ability to predict new solutions given parameters (prediction problem).

❖ Prediction loss used: .

❖ Compression loss: .

❖ Network trained using mini-batch descent with ADAM optimizer.

L(x, t, μ) = |x − g ∘ x̂ |2 + |h − x̂ |2

L(x, t, μ) = |x − g ∘ h |2

1-D Inviscid Burger’s Equation
❖ Let and consider:

❖ Want to predict semi-discrete solution
 at any

desired .

w = w(x, t, μ)

wt +
1
2 (w2)x

= 0.02eμ2x,

w(a, t, μ) = μ1,
w(x,0,μ) = 1,

w = w(t, μ)
μ ∈ [2,3] × [0.015,0.030]

Architecture Comparison

❖ CNN (left), GCNN (right)

❖ FCNN is 2+2 layers, neurons 256, 64, .n

1-D Inviscid Burger’s Equation
❖ Prediction problem is not

difficult for established
methods.

❖ Even (pictured) is
sufficient for <1% error with
CNN.

❖ Conversely, GCNN and FCNN
struggle when the latent space
is small.

n = 3

1-D Inviscid Burger’s Equation: Compression

❖ CNN still best for compression
until latent dim 32 (pictured)

❖ GCNN almost matches
performance of 2-layer FCNN
(best) with half the memory.

❖ Note that the CNN used
requires more than 6x the
memory of the FCNN.

1-D Inviscid Burger’s Equation: Results

❖ Loss pictured for .

❖ ROM Errors fluctuate with —
prediction network has issues.

n = 32

n

2-D Parameterized Heat Equation

• Consider

and solve

• Discretizing over (stretched) grid gives .

u = u(x, y, t, μ), U = [0,1] × [0,2], μ ∈ [0.05,0.5] × [π/2,π]

ut − Δu = 0 on U
u(0,y, t) = − 0.5
u(1,y, t) = μ1 cos(μ2y)
u(x, y,0) = 0

u = u(t, μ)

2-D Parameterized Heat Equation: Results

❖ Results shown for .

❖ GCNN has lowest error and
least memory requirement
(by >10x!)

❖ CNN is worst — cheap
hacks have a cost.

n = 10

2-D Parameterized Heat Equation: Results

2-D Parameterized Heat Equation: Results

Unsteady Navier-Stokes Equations
❖ Consider the Schafer-Turek

benchmark problem:

❖ Impose 0 boundary conditions
on . Do nothing on

. Parabolic inflow on .

·u − νΔu + ∇uu + ∇p = f,
∇ ⋅ u = 0,
u |t=0 = u0 .

Γ2, Γ4, Γ5
Γ3 Γ1

Navier-Stokes Equations: Results

❖

❖

❖ Reynolds
number
185.

❖ FCNN
best on
prediction
problem.

N = 10104

n = 32

Navier-Stokes Equations: Results

Navier-Stokes Equations: Results

❖ Compression

❖ GCNN
matches
FCNN in
accuracy

❖ GCNN
memory cost
is >50x less
than FCNN

Conclusions

❖ Standard CNN is not always the best!

❖ Even fully connected architectures are better in some cases.

❖ Graph CNN operations can be useful for ROM.

❖ At least, if the latent space is not too small.

❖ Would be interesting to combine GCNN with Newton/quasi-Newton.

Thank You!

