Anthony Gruber

Joint work with: M. Gunzburger, L. Ju, Z. Wang (FSU & UofSC)

Neural Network Architectures for Data Compression and Reduced-Order Modeling

Full-order Model

- * FOM: $\dot{\mathbf{x}}(t,\mu) = \mathbf{f}(t,\mathbf{x}(t,\mu),\mu), \mathbf{x}$
 - * μ is vector of parameters.
- * Dimension of **x** can be huge on the order of 10^4 to 10^6 .
- * Typically solved with time integrator e.g. a Runge-Kutta method. * Recently, neural networks used instead.
 - * Difficult due to high dimensionality.

$$\mathbf{x}(0,\boldsymbol{\mu}) = \mathbf{x}_0(\boldsymbol{\mu}) \,.$$

Reduced Order Modeling

- High-fidelity PDE simulations are expensive.
 - * Semi-discretization creates a lot of dimensionality.
- * Can we get good results without solving the full PDE?
- * Standard is to encode -> solve -> decode.
 - * This way, solving is low-dimensional.

Potential copyright issue

Image: https://mpas-dev.github.io/ocean/ocean.html

Idea behind ROM

- * Do we really need all 10⁶ dimensions?
- * No, if $(t, \mu) \mapsto \mathbf{x}(t, \mu)$ is unique.
 - * $\mathcal{S} = \{ \mathbf{x}(t, \boldsymbol{\mu}) \mid t \in [0, T], \boldsymbol{\mu} \in D \} \subset \mathbb{R}^N,$ solution manifold.
 - * $(n_{\mu} + 1)$ dimensions is enough for loss-less representation of \mathcal{S} .
- * How can we recover S efficiently?

Reduced-order Model

* Consider finding $\tilde{\mathbf{x}}$ s.t. $\mathbf{x} \approx \tilde{\mathbf{x}} = \mathbf{g} \circ \hat{\mathbf{x}}$ * $(t, \mu) \mapsto \hat{\mathbf{x}}(t, \mu) \in \mathbb{R}^n$ where $n \ll N$. * If $n \ge n_{\mu} + 1$, image of $\hat{\mathbf{x}}$ is potentially "big enough" to encode \mathbf{x} . * $\mathbf{g}: \mathbb{R}^n \to \mathbb{R}^N$ a decoder function. * e.g. linear projection; NN autoencoder.

Reduced-order Model

* Suppose $\tilde{\mathbf{x}}$ obeys same dynamics as \mathbf{x} . * Residual $\|\dot{\mathbf{x}} - f(\mathbf{x})\|^2$ is minimized when: * $\hat{\mathbf{x}}(t,\mu) = \mathbf{g}'(\hat{\mathbf{x}})^+ \mathbf{f}(t,\mathbf{g}(\hat{\mathbf{x}}),\mu), \quad \hat{\mathbf{x}}(0,\mu) = \mathbf{h}(\mathbf{x}_0(\mu)),$ * Here $\mathbf{g}'(\hat{\mathbf{x}})^+$ is the pseudoinverse of \mathbf{g}' . * $\mathbf{h} : \mathbb{R}^N \to \mathbb{R}^n$ left inverse of \mathbf{g} . * ODE of size N converted to ODE of size n. * "Hard part" is computing the decoder function **g**.

Proper Orthogonal Decomposition (POD)

- * Most popular ROM (until recently) is proper orthogonal decomposition.
- * SVD: $S = U\Sigma V$.
 - * First *n* cols of **U** (say **A**) reduced basis of POD modes.
 - * Instead of $\dot{\mathbf{x}} = f(\mathbf{x})$, can then solve $\dot{\mathbf{x}} = \mathbf{A}^+ \mathbf{f}(\mathbf{A}\hat{\mathbf{x}})$.
- * Totally linear procedure good and bad.

* Carry out PCA on solution snapshots $\{\mathbf{u}(t_i, \mathbf{x}, \boldsymbol{\mu}_i)\}_{i=1}^N$: generate matrix **S**.

POD vs Neural Network

- POD works well until EWs of Σ decay slowly.
 - Even many modes cannot reliably capture behavior.
- Conversely, FCNN/CNN
 captures patterns quite well.
- * Are all NNs equal for this purpose?

Potential copyright issue

Lee, K. and Carlberg, K. J. Comp. Phys. (2019)

Review: Fully Connected Network

- * Most obvious choice is FCNN. * Given $\mathbf{y} = \mathbf{y}_0 \in \mathbb{R}^{N_0}$ and $1 \leq \ell \leq L$, * $\mathbf{y}_{I} = \mathbf{T}_{I} \circ \mathbf{T}_{I-1} \circ \ldots \circ \mathbf{T}_{1}(\mathbf{y}_{0})$ * $\mathbf{y}_{\ell} = \mathbf{T}_{\ell}(\mathbf{y}_{\ell-1}) = \boldsymbol{\sigma}_{\ell}(\mathbf{W}_{\ell}\mathbf{y}_{\ell-1} + \mathbf{b}_{\ell}),$ * (W_{ℓ}, b_{ℓ}) are learnable parameters.
- * σ is element-wise activation function.

Input Layer ∈ R⁹

Hidden Layer $\in \mathbb{R}^{6}$

Output Layer $\in \mathbb{R}^3$

Review: Fully Connected Network

- * FCNN is most expressive, but prone to *overfitting* and *difficult to train*.
- * Also requires a large amount of memory due to overparametrization.
- First used for ROM by (Milano and Koumoutsakos 2002).
 - * Linear version equivalent to POD.

Input Layer ∈ R⁹

Hidden Layer $\in \mathbb{R}^6$

Output Layer ∈ R³

CNN Model Order Reduction

- * Lee and Carlberg (2019) used a convolutional neural network (CNN).
 - Demonstrated greatly improved performance over POD. Less memory cost than FCNN. *
- Convolution extracts high-level features which are used in encoding. *

K. Lee and K. T. Carlberg, J. Comp. Phys., 2019

Potential copyright issue

Disadvantage of CNN

* Recall:

$\mathbf{y}_{\ell,i} = \boldsymbol{\sigma}_{\ell} \left[\sum_{\substack{i=1 \\ j=1}}^{C_{in}} \mathbf{y}_{(\ell-1),j} \star \right]$

Convolution \star in 2-D: ** $(\mathbf{x} \star \mathbf{W})^{\alpha}_{\beta} =$

* Only well defined (in this form) for regular domains!

$$\mathbf{W}_{\ell,i}^{j} + \mathbf{b}_{\ell,i}$$
, where $1 \le i \le C_{out}$.

$$= \sum_{\substack{\chi, \delta \\ \gamma, \delta}} x_{(s\beta+\delta)}^{(s\alpha+\gamma)} w_{(M-1-\delta)}^{(L-1-\gamma)},$$

Disadvantage of CNN

- * How to use CNN on irregular data?
- * Current strategy is to ignore the problem:
 - * inputs y padded with fake nodes and reshaped to a square.
 - Convolution applied to square-ified input.
 - * $\tilde{\mathbf{y}}$ reassembled at end. Fake nodes ignored.
- * Works surprisingly well!
 - * But, not very meaningful.

* Huge amount of recent work extending convolution to graph domains.

* $\mathscr{G} = (\mathscr{V}, \mathscr{E})$ undirected graph with adj. matrix $\mathbf{A} \in \mathbb{R}^{|\mathscr{V}| \times |\mathscr{V}|}$. **D** the degree matrix $d_{ii} = \sum a_{ij}$. * The Laplacian of \mathcal{G} : $\mathbf{L} = \mathbf{D} - \mathbf{A} = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^{\top}$.

* Columns of **U** are Fourier modes of \mathcal{G} .

* Discrete FT/IFT: simply multiply by U^{\dagger}/U .

- * $\mathbf{y}_i : \mathbb{R}^{|\mathcal{V}|} \to \mathbb{R}$ signals at nodes.
- * Convolution theorem: $\mathbf{y}_1 \star \mathbf{y}_2 = \mathbf{U} (\mathbf{U}^{\mathsf{T}} \mathbf{y}_1 \odot \mathbf{U}^{\mathsf{T}} \mathbf{y}_2).$
- * Well defined on *any domain* without reference to local neighborhoods.
- * Learnable spectral filters: $g_{\theta}(\mathbf{L})\mathbf{y} = \mathbf{U}g_{\theta}(\mathbf{\Lambda})\mathbf{U}^{\mathsf{T}}\mathbf{y}$ where $g_{\theta}(\mathbf{\Lambda}) = \sum \theta_k \mathbf{\Lambda}^k$.
 - * Degree *K* filters are precisely *K*-localized on *G*! (not obvious)

- Multiplication with Fourier basis is too expensive.
- (Defferard et al. 2016) Use Chebyshev polynomial filters. *
- * Leads to the propagation rule:

$$\mathbf{x}_{\ell,i} = \boldsymbol{\sigma}_{\ell} \left(\sum_{j=1}^{C_{in}} \mathbf{W}_{\ell,i}^{j} \mathbf{x}_{(\ell-1),j} + \mathbf{b}_{\ell,i} \right),$$

 $W_{\ell,i}^{j} = \left(g_{\theta}(\mathbf{L})\right)_{\ell,i}^{J} = \sum_{k} \theta_{\ell,ki}^{j} T_{k}(\tilde{\mathbf{L}}) \text{ where } \tilde{\mathbf{L}} \text{ is rescaled Laplacian.}$

* $1 \le k \le K$ is a user-defined choice — leads to *K*-hop aggregation.

- * Let $\tilde{\mathbf{P}} = (\mathbf{D} + \mathbf{I})^{-1/2} (\mathbf{A} + \mathbf{I}) (\mathbf{D} + \mathbf{I})^{-1/2}$ (added self-loops).
- * Simplified 1-localized GCN (Kipf and Welling 2016): $\mathbf{x}_{\ell+1} = \boldsymbol{\sigma} (\tilde{\mathbf{P}} \mathbf{x}_{\ell} \mathbf{W}_{\ell})$.
- * Good performance on small-scale classification tasks, but known for *oversmoothing*. * (Chen et al. 2020) proposed GCN2, adding residual connection and identity map:

$$\mathbf{x}_{\ell+1} = \boldsymbol{\sigma} \left[\left((1 - \alpha_{\ell}) \tilde{\mathbf{P}} \mathbf{x}_{\ell} + \alpha_{\ell} \mathbf{x}_{0} \right) \left((1 - \beta_{\ell}) \mathbf{I} + \beta_{\ell} \mathbf{W}_{\ell} \right) \right],$$

* $\alpha_{\ell}, \beta_{\ell}$ — hyperparameters.

* Equivalent to a degree L polynomial filter with arbitrary coefficients.

GC Autoencoder Architecture

- * GCN2 layers encodedecode.
- * Blue layers are fully connected.
- * For ROM: purple network simulates lowdim dynamics.
- Split network idea due to (Fresca et al. 2020).

Experimental Details

- * Evaluation based on two criteria:
 - * Pure reconstruction ability (compression problem).
- * Prediction loss used: $L(\mathbf{x}, t, \mu) = |\mathbf{x}|$
- * Compression loss: $L(\mathbf{x}, t, \mu) = |\mathbf{x} \mathbf{g} \circ \mathbf{h}|^2$.
- * Network trained using mini-batch descent with ADAM optimizer.

* Want to compare performance of GCAE, CAE, FCAE for ROM applications.

* Ability to predict new solutions given parameters (prediction problem).

$$\mathbf{x} - \mathbf{g} \cdot \hat{\mathbf{x}}|^2 + |\mathbf{h} - \hat{\mathbf{x}}|^2.$$

1-D Inviscid Burger's Equation

* Let $w = w(x, t, \mu)$ and consider:

$$w_{t} + \frac{1}{2} (w^{2})_{x} = 0.02e^{\mu_{2}x},$$

$$w(a, t, \mu) = \mu_{1},$$

$$w(x, 0, \mu) = 1,$$

* Want to predict semi-discrete solution $\mathbf{w} = \mathbf{w}(t, \mu)$ at any desired $\mu \in [2,3] \times [0.015, 0.030]$.

Architecture Comparison

layer	input size	kernel size	stride	padding	output size	activation		layer	input size	kernel size	α	θ	output size	a
	Sample	es of size (256,1	l) are res	haped to size	ze (1, 16, 16).			1-C	(N, n_f)	$n_f imes n_f$	0.2	1.5	(N, n_f)	
1-C	(1, 16, 16)	5x5	1	SAME	(8, 16, 16)	ELU								
2-C	(8, 16, 16)	5x5	2	SAME	(16, 8, 8)	ELU		N_l -C	N, n_f	$n_f imes n_f$	0.2	1.5	(N, n_f)	
3-C	(16, 8, 8)	5x5	2	SAME	(32, 4, 4)	ELU	Samples of size (N, n_f) are flattened to si					l to size $(n_f * I)$	\overline{N}).	
4-C	(32, 4, 4)	5x5	2	SAME	(64, 2, 2)	ELU		1-FC	$n_f * N$				n	
	Samp	les of size (64,	2, 2) are	flattened t	o size (256).				End of enco	oding layers. E	eginr	ning c	of decoding laye	ers.
1-FC	256				reduced dim	ELU		2-FC	n				$n_f * N$	
End of encoding layers. Beginning of decoding layers.								Samples of size $(n_f * N)$ are reshaped to size (N, n_f)					$\frac{1}{\iota_f}$.	
2-FC	reduced dim				256	ELU		1-TC	(N, n_f)	$n_f \times n_f$	0.2	1.5	(N, n_f)	Ť
	Samp	les of size (256)	i) are rest	haped to siz	ze $(64, 2, 2)$.					· · ·				
1-TC	(64, 2, 2)	5x5	2	SAME	(64, 4, 4)	ELU		N _l -TC	(N, n_f)	$n_f \times n_f$	0.2	1.5	(N, n_f)	
2-TC	(64, 4, 4)	5x5	2	SAME	(32, 8, 8)	ELU			End of deco	ding lavers. P	redict	tion la	avers listed bel	Jow.
3-TC	(32, 8, 8)	5x5	2	SAME	(16, 16, 16)	ELU		3-FC	$n_{} + 1$				50	
4-TC	(16, 16, 16)	5x5	1	SAME	(1, 16, 16)	ELU		4-FC	50				50	\vdash
Samples of size $(1, 16, 16)$ are reshaped to size $(256, 1)$.														
				• —				11 FC	50		•••••		<i>m</i>	Τ
								11-FU		<u> </u>			11	

* CNN (left), GCNN (right)

* FCNN is 2+2 layers, neurons 256, 64, *n*.

activation

ReLU

ReLU

Identity

Identity

ReLU

ReLU

ELU

ELU

Identity

1-D Inviscid Burger's Equation

- Prediction problem is not difficult for established methods.
- Even n = 3 (pictured) is
 sufficient for <1% error with
 CNN.
- Conversely, GCNN and FCNN struggle when the latent space is small.

1-D Inviscid Burger's Equation: Compression

- CNN still best for compression
 until latent dim 32 (pictured)
- GCNN almost matches
 performance of 2-layer FCNN
 (best) with half the memory.
- Note that the CNN used requires more than 6x the memory of the FCNN.

1-D Inviscid Burger's Equation: Results

1			Enc	$\operatorname{coder}/\operatorname{De}$	ecoder -	Encoder/Decoder of				
J		Network	n	$R\ell_1\%$	$R\ell_2\%$	Size (MB)	n	$R\ell_1\%$	$R\ell_2\%$	Size
		GCN		4.41	8.49	0.164		2.54	5.31	0
		CNN	3	0.304	0.605	1.93	3	0.290	0.563	
		FCNN		1.62	3.29	0.336		0.658	1.66	0
		GCN		2.08	3.73	0.197	10	0.706	1.99	0
)		CNN	10	0.301	0.630	1.98		0.215	0.409	
1		FCNN		0.449	1.15	0.343		0.171	0.361	0
J		GCN		2.59	4.17	0.295		0.087	0.278	0
		CNN	32	0.350	0.675	2.08	32	0.216	0.384	
	FCNN		0.530	1.303	0.377		0.098	0.216	0	
					-	4 75 1.	The second secon			

* Loss pictured for n = 32.

* ROM Errors fluctuate with *n* — prediction network has issues.

2-D Parameterized Heat Equation

• Consider

 $u = u(x, y, t, \mu), U = [0,1] \times [0,2], \mu \in [0.05, 0.5] \times [\pi/2, \pi]$ and solve

$$\begin{cases} u_t - \Delta u = 0 & \text{on } U \\ u(0, y, t) = -0.5 \\ u(1, y, t) = \mu_1 \cos(\mu_2 y) \\ u(x, y, 0) = 0 \end{cases}$$

• Discretizing over (stretched) grid gives $u = \mathbf{u}(t, \boldsymbol{\mu})$.

GCNN CNN FCNN 0.4 0.4 - 0.2 - 0.2 - 0.2 - 0.0 - 0.0 - 0.0 -0.2 - -0.2 - -0.2 -0.4 -0.4 -0.4 - 0.2 - 0.2 - 0.2 - 0.0 - 0.0 - 0.0 - -0.2 -0.2 - -0.2 - -0.4 -0.4 -0.4 -0.040 - 0.06 - 0.07 -0.035 - 0.06 - 0.05 0.030 0.05 -0.025 - 0.04 - 0.04 -0.020 - 0.03 - 0.03 -0.015 - 0.02 - 0.02 -0.010 - 0.01 - 0.01 - 0.005 - 0.00 0.000 - 0.00

Solution u: Exact, Reconstructed, Pointwise Error

2-D Parameterized Heat Equation: Results

- * Results shown for n = 10.
- * GCNN has lowest error and least memory requirement (by > 10x!)
- * CNN is worst cheap hacks have a cost.

2-D Parameterized Heat Equation: Results

		Encod	m der/Deco	oder + Predi	ction	Encoder/Decoder only				
Network	n	$n = R\ell_1 \%$	Rlo%	Size (MB)	Time per	n	Bl. %	Blog	Size (MB)	Time per
INCOMOIN	10	10170	10270	Size (MID)	Epoch (s)	10	101/0	10270	Size (MID)	Epoch (s)
GCN		7.19	9.21	0.132	9.5		6.96	9.21	0.0659	9.2
CNN	3	3.26	4.58	3.64	18	3	3.36	3.81	3.62	18
FCNN		4.75	6.19	3.74	3.3		4.22	5.69	3.72	3.1
GCN		2.87	3.82	0.253	9.6		2.06	2.85	0.186	9.4
CNN	10	3.07	4.38	3.87	18	10	2.45	2.90	3.85	18
FCNN		2.96	3.97	3.76	3.3		2.32	2.92	3.73	3.1
GCN		2.55	3.48	0.636	9.6		1.05	1.91	0.564	9.2
CNN	32	2.30	3.73	4.60	19	32	2.34	2.91	4.57	18
FCNN		2.65	4.25	3.80	3.2		1.61	2.31	3.77	3.2

2-D Parameterized Heat Equation: Results

Errors

 -	 _
- 0.07	- 0.0
- 0.06	- 0.0
- 0.05	- 0.04
- 0.04	- 0.0
- 0.03	0.0.
- 0.02	- 0.0.
- 0.01	- 0.01
- 0.00	- 0.0

* Consider the Schafer-Turek benchmark problem:

 $\dot{\mathbf{u}} - \nu \Delta \mathbf{u} + \nabla_{\mathbf{u}} \mathbf{u} + \nabla p = \mathbf{f},$ $\nabla \cdot \mathbf{u} = 0,$ $\mathbf{u}|_{t=0} = \mathbf{u}_0.$

* Impose 0 boundary conditions on $\Gamma_2, \Gamma_4, \Gamma_5$. Do nothing on Γ_3 . Parabolic inflow on Γ_1 .

Unsteady Navier-Stokes Equations

Navier-Stokes Equations: Results

* N = 10104

- * *n* = 32
- * Reynolds number 185.
- * FCNN best on prediction problem.

Speed |u|: Exact, Reconstructed, Pointwise Error

Navier-Stokes Equations: Results

		Encod	m der/ m Deco	oder + Predi	ction	Encoder/Decoder only					
Network	~	D0.07	D0.07	Size (MP)	Time per	~	De 07	D0 07	Size (MP)	Time per	
network	π	$R \iota_1 \prime_0$	$n \alpha_2 \gamma_0$	Size (MD)	Epoch (s)	n	$n \iota_1 / 0$	$R\ell_2 / 0$	Size (MD)	Epoch (s)	
GCN		9.07	14.6	0.476	33		7.67	12.2	0.410	32	
CNN	2	7.12	11.1	224	210	2	11.2	17.6	224	190	
FCNN		1.62	2.87	330	38		1.62	2.70	330	38	
GCN		2.97	5.14	5.33	32		0.825	1.49	5.26	32	
CNN	32	4.57	7.09	232	230	32	4.61	7.24	232	220	
FCNN		1.39	2.64	330	38		0.680	1.12	330	38	
GCN		2.88	4.96	10.5	33		0.450	0.791	10.4	33	
CNN	64	3.42	5.33	241	270	64	2.42	3.57	241	260	
FCNN		1.45	2.64	330	38		0.704	1.19	330	37	

Navier-Stokes Equations: Results

- GCNN -2.0 -15 -10 - 0.5 -2.0 -1.5 -10 - 0.5 -0.14 -0.12 -0.10 - 0.08 -0.06 - 0.04 - 0.02
- Compression
 GCNN matches FCNN in accuracy
- GCNN
 memory cost
 is >50x less
 than FCNN

Exact, Reconstructed, Error

CNN

- 2.0

-15

-10

- 0.5

- 2.5

- 2.0

-15

-10

- 0.5

0.6

- 0.5

- 0.4

- 0.3

- 0.2

- 0.1

Conclusions

Standard CNN is not always the best!
Even fully connected architectures are better in some cases.
Graph CNN operations can be useful for ROM.
At least, if the latent space is not too small.
Would be interesting to combine GCNN with Newton/quasi-Newton.

Thank You!