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Full-order Model

❖ FOM:     

❖  is vector of parameters.


❖ Dimension of  can be huge — on the order of  to .


❖ Typically solved with time integrator e.g. a Runge-Kutta method.


❖ Recently, neural networks used instead.


❖ Difficult due to high dimensionality.

·x(t, μ) = f (t, x(t, μ), μ), x(0,μ) = x0(μ) .

μ

x 104 106



Reduced Order Modeling
❖ High-fidelity PDE simulations are 

expensive.


❖ Semi-discretization creates a lot of 
dimensionality.


❖ Can we get good results without solving 
the full PDE?


❖ Standard is to encode -> solve -> decode.


❖ This way, solving is low-dimensional. Image:  https://mpas-dev.github.io/ocean/ocean.html

Potential copyright issue
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Idea behind ROM

❖ Do we really need all  dimensions?


❖ No, if    is unique.


❖   
solution manifold.


❖ ( ) dimensions is enough for 
loss-less representation of .


❖ How can we recover  efficiently?

106

(t, μ) ↦ x(t, μ)

𝒮 = {x(t, μ) | t ∈ [0,T], μ ∈ D} ⊂ ℝN,

nμ + 1
𝒮

𝒮



Reduced-order Model

❖ Consider finding    s.t.  

❖    where  .


❖ If  ,  image of  is potentially “big enough’’ to encode .


❖    a decoder function.


❖ e.g. linear projection;  NN autoencoder.

x̃ x ≈ x̃ = g ∘ x̂

(t, μ) ↦ x̂(t, μ) ∈ ℝn n ≪ N

n ≥ nμ + 1 x̂ x

g : ℝn → ℝN



Reduced-order Model
❖ Suppose  obeys same dynamics as .


❖ Residual    is minimized when:


❖  


❖ Here  is the pseudoinverse of .


❖   left inverse of .


❖ ODE of size  converted to ODE of size .


❖ “Hard part” is computing the decoder function .

x̃ x

∥ ·̃x − f(x̃)∥2

·x̂(t, μ) = g′￼(x̂)+f (t, g(x̂), μ), x̂(0,μ) = h(x0(μ)),

g′￼(x̂)+ g′￼

h : ℝN → ℝn g

N n

g



Proper Orthogonal Decomposition (POD)

❖ Most popular ROM (until recently) is proper orthogonal decomposition.


❖ Carry out PCA on solution snapshots  :  generate matrix .


❖ SVD:  .    


❖ First n cols of  (say ) — reduced basis of POD modes.


❖ Instead of ,  can then solve  .


❖ Totally linear procedure — good and bad.

{u(tj, x, μj)}N
j=1 S

S = UΣV

U A
·x = f(x) ·x̂ = A+f(Ax̂)



POD vs Neural Network

❖ POD works well until EWs of  
decay slowly.


❖ Even many modes cannot 
reliably capture behavior.


❖ Conversely, FCNN/CNN 
captures patterns quite well.


❖ Are all NNs equal for this purpose?

Σ

Lee, K. and Carlberg, K.  J. Comp. Phys. (2019)
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Review: Fully Connected Network

❖ Most obvious choice is FCNN.


❖ Given  and  ,


❖

❖

❖ ( )  are learnable parameters.


❖   is element-wise activation function.

y = y0 ∈ ℝN0 1 ≤ ℓ ≤ L

yL = TL ∘ TL−1 ∘ . . . ∘ T1(y0)

yℓ = Tℓ(yℓ−1) = σℓ (Wℓyℓ−1 + bℓ),

Wℓ, bℓ

σ



Review: Fully Connected Network

❖ FCNN is most expressive, but prone 
to overfitting and difficult to train.

❖ Also requires a large amount of 
memory due to overparametrization.


❖ First used for ROM by (Milano and 
Koumoutsakos 2002).


❖ Linear version equivalent to POD.



CNN Model Order Reduction
❖ Lee and Carlberg (2019) used a convolutional neural network (CNN).


❖ Demonstrated greatly improved performance over POD.  Less memory cost than FCNN.


❖ Convolution extracts high-level features which are used in encoding. 
 
 
 
 
 

K. Lee and K. T. Carlberg, J. Comp. Phys., 2019
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Disadvantage of CNN

❖ Recall:      

                       where   .


❖ Convolution  in 2-D:     
                                            

❖ Only well defined (in this form) for regular domains!

yℓ,i = σℓ

Cin

∑
j=1

y(ℓ−1),j ⋆ Wj
ℓ,i + bℓ,i , 1 ≤ i ≤ Cout

⋆
(x ⋆ W)α

β = ∑
γ,δ

x(sα+γ)
(sβ+δ) w(L−1−γ)

(M−1−δ),



Disadvantage of CNN
❖ How to use CNN on irregular data?


❖ Current strategy is to ignore the problem:


❖ inputs  padded with fake nodes and reshaped to a square.


❖ Convolution applied to square-ified input.


❖  reassembled at end.  Fake nodes ignored.


❖ Works surprisingly well!


❖ But, not very meaningful.

y

ỹ



Graph Convolutional Networks

❖ Huge amount of recent work extending convolution to graph 
domains.


❖   undirected graph with adj. matrix .


❖
 the degree matrix  .


❖ The Laplacian of :   .


❖ Columns of  are Fourier modes of .  


❖ Discrete FT/IFT:  simply multiply by .

𝒢 = (𝒱, ℰ) A ∈ ℝ|𝒱|×|𝒱|

D dii = ∑
j

aij

𝒢 L = D − A = UΛU⊤

U 𝒢

U⊤/U



Graph Convolutional Networks

❖   signals at nodes.


❖ Convolution theorem:  .


❖ Well defined on any domain without reference to local neighborhoods.


❖ Learnable spectral filters:      where .


❖ Degree  filters are precisely -localized on !  (not obvious)

yi : ℝ|𝒱| → ℝ

y1 ⋆ y2 = U (U⊤y1 ⊙ U⊤y2)

gθ(L)y = Ugθ(Λ)U⊤y gθ(Λ) = ∑ θkΛk

K K 𝒢



Graph Convolutional Networks
❖ Multiplication with Fourier basis is too expensive.


❖ (Defferard et al. 2016)  Use Chebyshev polynomial filters.


❖ Leads to the propagation rule: 
 

❖
  where  is rescaled Laplacian.


❖   is a user-defined choice — leads to -hop aggregation.

xℓ,i = σℓ

Cin

∑
j=1

Wj
ℓ,ix(ℓ−1),j + bℓ,i ,

Wj
ℓ,i = (gθ(L))j

ℓ,i
= ∑

k

θ j
ℓ,kiTk(L̃) L̃

1 ≤ k ≤ K K



Graph Convolutional Networks
❖ Let     (added self-loops).


❖ Simplified 1-localized GCN (Kipf and Welling 2016):   .


❖ Good performance on small-scale classification tasks, but known for oversmoothing.


❖ (Chen et al. 2020) proposed GCN2, adding residual connection and identity map:               
                
              

❖  — hyperparameters.


❖ Equivalent to a degree L polynomial filter with arbitrary coefficients.

P̃ = (D + I)−1/2(A + I)(D + I)−1/2

xℓ+1 = σ (P̃xℓWℓ)

xℓ+1 = σ [((1 − αℓ)P̃xℓ + αℓx0) ((1 − βℓ)I + βℓWℓ)],

αℓ, βℓ



GC Autoencoder Architecture
❖ GCN2 layers encode-

decode.


❖ Blue layers are fully 
connected.


❖ For ROM:  purple 
network simulates low-
dim dynamics.


❖ Split network idea due 
to (Fresca et al. 2020). skip connection



Experimental Details
❖ Want to compare performance of GCAE, CAE, FCAE for ROM applications.


❖ Evaluation based on two criteria:


❖ Pure reconstruction ability (compression problem).


❖ Ability to predict new solutions given parameters (prediction problem).


❖ Prediction loss used:   .


❖ Compression loss:   .


❖ Network trained using mini-batch descent with ADAM optimizer.

L(x, t, μ) = |x − g ∘ x̂ |2 + |h − x̂ |2

L(x, t, μ) = |x − g ∘ h |2



1-D Inviscid Burger’s Equation
❖ Let    and consider:  

 

 

❖ Want to predict semi-discrete solution  
  at any  

desired . 

w = w(x, t, μ)

wt +
1
2 (w2)x

= 0.02eμ2x,

w(a, t, μ) = μ1,
w(x,0,μ) = 1,

w = w(t, μ)
μ ∈ [2,3] × [0.015,0.030]



Architecture Comparison

❖ CNN (left), GCNN (right)


❖ FCNN is 2+2 layers, neurons 256, 64, .n



1-D Inviscid Burger’s Equation
❖ Prediction problem is not 

difficult for established 
methods.


❖ Even   (pictured) is 
sufficient for <1% error with 
CNN.


❖ Conversely, GCNN and FCNN 
struggle when the latent space 
is small.

n = 3



1-D Inviscid Burger’s Equation: Compression

❖ CNN still best for compression 
until latent dim 32 (pictured)


❖ GCNN almost matches 
performance of 2-layer FCNN 
(best) with half the memory.


❖ Note that the CNN used 
requires more than 6x the 
memory of the FCNN.



1-D Inviscid Burger’s Equation: Results

❖ Loss pictured for .


❖ ROM Errors fluctuate with  — 
prediction network has issues.

n = 32

n



2-D Parameterized Heat Equation

• Consider 
  

and solve 
 

• Discretizing over (stretched) grid gives .

u = u(x, y, t, μ), U = [0,1] × [0,2], μ ∈ [0.05,0.5] × [π/2,π]

ut − Δu = 0 on U
u(0,y, t) = − 0.5
u(1,y, t) = μ1 cos(μ2y)
u(x, y,0) = 0

u = u(t, μ)



2-D Parameterized Heat Equation: Results

❖ Results shown for .


❖ GCNN has lowest error and 
least memory requirement 
(by >10x!)


❖ CNN is worst — cheap 
hacks have a cost.

n = 10



2-D Parameterized Heat Equation: Results



2-D Parameterized Heat Equation: Results



Unsteady Navier-Stokes Equations
❖ Consider the Schafer-Turek 

benchmark problem: 
 

 

❖ Impose 0 boundary conditions 
on  .  Do nothing on 

.  Parabolic inflow on .

·u − νΔu + ∇uu + ∇p = f,
∇ ⋅ u = 0,
u |t=0 = u0 .

Γ2, Γ4, Γ5
Γ3 Γ1



Navier-Stokes Equations: Results

❖

❖

❖ Reynolds 
number 
185. 


❖ FCNN 
best on 
prediction 
problem.

N = 10104

n = 32



Navier-Stokes Equations: Results



Navier-Stokes Equations: Results

❖ Compression


❖ GCNN 
matches 
FCNN in 
accuracy


❖ GCNN 
memory cost 
is >50x less 
than FCNN



Conclusions

❖ Standard CNN is not always the best!


❖ Even fully connected architectures are better in some cases.


❖ Graph CNN operations can be useful for ROM.


❖ At least, if the latent space is not too small.


❖ Would be interesting to combine GCNN with Newton/quasi-Newton.



Thank You!


