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Examples

Functionals involving surface curvature have a range of applications across
science and mathematics.

Helfrich-Canham energy

EH(M) :=

∫

M
kc(2H + c0)

2 + kK dS ,

Bulk free energy density

σF (M) =

∫

M
2k(2H2 − K ) dS ,

Willmore energy

W2(M) =

∫

M
H2 dS .
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General bending energy

All these energies are special cases of a bending energy model proposed by
Sophie Germain in 1820,

B(M) =

∫

M
S(κ1,κ2) dS ,

where S is a symmetric polynomial in the principal curvatures κ1,κ2.

By Newton’s theorem, this is equivalent to the functional

F(M) =

∫

M
E(H,K ) dS ,

where E is smooth in H = 1
2(κ1 + κ2),K = κ1κ2.
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Our problem

We study the functional F(M) on surfaces M ⊂ M3(k0) which are
immersed in a space form of constant sectional curvature k0.

Why leave Euclidean space?

It’s mathematically relevant (e.g. conformal geometry in S3,
geometry in projective space CP3).

Physicists care about immersions in “Minkowski space”, which has
constant sectional curvature −1.

Bending energy is different depending on the ambient space! For
example, (κ1 − κ2)2 = 4(H2 − K + k0).
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Geometric framework

Consider a variation of the surface M, i.e. a 1-parameter family of
compactly supported immersions r(x, t) as in the following diagram,

FO
(
M3(k0)

)

M × R M3(k0)

πr̃

r

Choosing a section {eJ} of FO
(
M3(k0)

)
and a dual basis {ωI} such that

ωI (eJ) = δIJ , it follows that:

Metric on M3(k0) : g = (ω1)2 + (ω2)2 + (ω3)2.

Connection on M3(k0) : ∇eI = eJ ⊗ ωJ
I .

Volume form on M3(k0) = ω1 ∧ ω2 ∧ ω3.

Connection is Levi-Civita when ωI
J = −ωJ

I .
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Geometric framework (2)

The Cartan structure equations on M3(k0) are then

dωI = −ωI
J ∧ ωJ ,

dωI
J = −ωI

K ∧ ωK
J +

1

2
R I
JKLω

K ∧ ωL.

We may assume the normal velocity of r satisfies

∂r
∂t

= uN,

for some smooth u : M × R → R. Pulling back the frame to M × R, we
may further assume e3 := N is normal to M × {t} for each t, in which case

ωi = ωi (i = 1, 2),

ω3 = u dt.
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Geometric framework (3)

Pulling back the structure equations on M3(k0), it is then possible to
compute geometric information about M. In particular, d(ω3 − u dt) = 0
implies

−ω3
j ∧ ωj − du ∧ dt = 0,

so that (by Cartan’s Lemma) there are functions u1, u2, u̇ and hij = hji
satisfying 


ω3
1

ω3
2

du



 =




h11 h12 u1
h21 h22 u2
u1 u2 u̇








ω1

ω2

dt



 .

Since ∇N = ej ⊗ ωj
3, it follows that the hij are the components of the

(symmetrized) second fundamental form of M,

II = hij ω
1 ⊗ ω2 ⊗N.
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Geometric framework (4)

We can compute variations in a similar way. Pulling back the evolving
functional through the inclusion ιt : M → M × {t}, we differentiate

δF(M) =
d

dt

∣∣∣∣
t=0

∫

M×{t}
E(H,K )ω1 ∧ ω2 =

∫

M
L∂/∂t

(
E(H,K )ω1 ∧ ω2

)
.

By Cartan’s formula, this becomes

δF(M) =

∫

M

∂

∂t
¬ d

(
E(H,K )ω1 ∧ ω2

)
,

since ∂
∂t

¬ ω1 ∧ ω2 = 0.
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General first variation

There is then the following necessary condition for criticality.

Theorem: G., Toda, Tran
The first variation of the curvature functional F is given by

δ

∫

M
E(H,K ) dS

=

∫

M

(
1

2
EH + 2HEK

)
∆u +

(
(2H2 − K + 2k0)EH + 2HKEK − 2HE

)
u

− EK 〈h,Hess u〉 dS ,

where EH , EK denote the partial derivatives of E with respect to H resp.
K , and h is the shape operator of M (II = hN).
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General second variation

Theorem: G., Toda, Tran
At a critical immersion of M, the second variation of F is given by

δ2
∫

M
E(H,K ) dS =

∫

M

(
1

4
EHH + 2HEHK + 4H2EKK + EK

)
(∆u)2 dS

+

∫

M
EKK 〈h,Hess u〉2 dS −

∫

M

(
EHK + 4HEKK

)
∆u〈h,Hess u〉 dS

+

∫

M
EK

(
u〈∇K ,∇u〉 − 3u〈h2,Hess u〉 − 2 h2(∇u,∇u)− |Hess u|2

)
dS

+

∫

M

(
(2H2 − K + 2k0)EHH + 2H(4H2 − K + 4k0)EHK + 8H2KEKK

− 2HEH + (3k0 − K )EK − E
)
u∆u dS

+

∫

M

(
(2H2 − K + 2k0)

2EHH + 4HK (2H2 − K + 2k0)EHK + 4H2K 2EKK

− 2K (K − 2k0)EK − 2HKEH + 2(K − 2k0)E
)
u2 dS

+

∫

M

(
2EH + 6HEK − 2(2H2 − K + 2k0)EHK − 4HKEKK

)
u〈h,Hess u〉 dS

+

∫

M

(
EH + 4HEK

)
h(∇u,∇u) dS +

∫

M
EH u〈∇H,∇u〉 dS

−
∫

M

(
2(K − k0)EK + HEH

)
|∇u|2 dS ,

where the subscripts EHH , EHK , EKK denote the second partial derivatives of E in the appropriate variables.
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Advantages of these variational results

Valid in any space form of constant sectional curvature k0, not only
Euclidean space.

Quantities involved are as elementary as possible – directly
computable from surface fundamental forms for a given u.

Very useful also for studying specific functionals. For example, these
expressions give immediately the known variation of the Willmore
functional,

δ

∫

M
H2 dS =

∫

M

(
H∆u + 2H(H2 − K + 2k0)u

)
dS .

Note that it follows that closed Willmore surfaces in M3(k0) are
characterized by the equation

∆H + 2H(H2 − K + 2k0) = 0.
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The p-Willmore energy

Another interesting curvature functional is the p-Willmore energy,

Wp(M) =

∫

M
Hp dS (p ≥ 1)

Natural from the point of view of bending energies.

Generalizes the usual Willmore energy.

Not conformally invariant when p += 2.

Also encompasses the total mean curvature functional W1, and can
be extended to consider the area functional as W0.

Highly connected to minimal surface theory when p > 2 !!
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Variations of p-Willmore energy

Corollary: G., Toda, Tran

The first variation of Wp is given by

δ

∫

M
Hp dS =

∫

M

[p
2
Hp−1∆u + (2H2 − K + 2k0)pH

p−1u − 2Hp+1u
]
dS ,

Moreover, the second variation of Wp at a critical immersion is given by

δ2
∫

M
Hp dS =

∫

M

p(p − 1)

4
Hp−2(∆u)2 dS

+

∫

M
pHp−1

(
h(∇u,∇u) + 2u〈h,Hess u〉+ u〈∇H,∇u〉 − H|∇u|2

)
dS

+

∫

M

(
(2p2 − 4p − 1)Hp − p(p − 1)KHp−2 + 2p(p − 1)k0H

p−2

)
u∆u dS

+

∫

M

(
4p(p − 1)Hp+2 − 2(p − 1)(2p + 1)KHp + p(p − 1)K 2Hp−2

+ 4(2p2 − 2p − 1)k0H
p − 4p(p − 1)k0KH

p−2 + 4p(p − 1)k20H
p−2

)
u2 dS .
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Connection to minimal surfaces

Define a p-Willmore surface to be any M satisfying the Euler-Lagrange
equation,

p

2
∆Hp−1 − p(2H2 − K + 2k0)H

p−1 + 2Hp+1 = 0 on M.

Then, it is possible to show the following:

Theorem: G., Toda, Tran

When p > 2, any p-Willmore surface M ⊂ R3 satisfying H = 0 on ∂M is
minimal.

More precisely, let p > 2 and R : M → R3 be an immersion of the
p-Willmore surface M with boundary ∂M. If H = 0 on ∂M, then H ≡ 0
everywhere on M.

(p > 2)-Willmore surface with H = 0 on ∂M ⇐⇒ minimal surface!
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Sketch of proof

Let n be conormal to the immersion R on ∂M. The first goal is to establish
the following integral equality, inspired by a result from Bergner et al. [1]:

∫

∂M
∇n(H

p−1)〈R,N〉 =
∫

∂M
Hp−1

(
〈∇nN,R〉+ (2/p)H〈∇nR,R〉

)

+
2(p − 2)

p

∫

M
Hp.

Similar computations as before establish the geometric identities

∆R− 2HN = 0,

∆N+ 2∇∇HR+ 2(2H2 − K )N = 0.

On a p-Willmore surface,

−
∫

M

(
pHp−1(2H2 − K )− 2Hp+1

)
〈R,N〉 = p

2

∫

M
∆(Hp−1)〈R,N〉

=

∫

M
Hp−1∆〈R,N〉+ boundary terms.
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Sketch of proof (2)

Continuing this computation eventually yields

−
∫

M

(
pHp−1(2H2 − K )− 2Hp+1

)
〈R,N〉+ boundary terms

=

∫

M
(2− p)Hp −

∫

M

(
pHp−1(2H2 − K )− 2Hp+1

)
〈R,N〉,

and algebraic manipulations yield the result.

Now, when p > 2 and H = 0 on ∂M, it follows that

0 =

∫

∂M
∇n(H

p−1)〈R,N〉 = 2(p − 2)

p

∫

M
Hp.

When p is even, it follows immediately that H = 0 a.e. on M, so H ≡ 0.
When p is odd (or not integer), divide M into regions where H > 0 and
H < 0. Continuity implies that H = 0 on the boundaries, so the above
integral equality applies. Conclude H ≡ 0 everywhere on M.
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Consequences

This result has a number of interesting consequences. First,

NOT true for p = 2: many solutions (non-minimal catenoids, etc.) to
Willmore equation with H = 0 on boundary.

Further, it follows immediately that

Corollary: G., Toda, Tran

There are no closed p-Willmore surfaces immersed in R3 when p > 2.

Proof. There are no closed minimal surfaces in R3.

This means,

The round sphere, Clifford torus, etc. are no longer minimizing in
general for Wp.

Minimization must be modified if there are to be closed solutions for
all p.

Anthony Gruber (Texas Tech University) Curvature functionals and variational problems April 29, 2019 19 / 30



Volume-constrained p-Willmore

Since Wp is physically motivated as a bending energy model, it is
reasonable to consider its minimization subject to geometric constraints.

Let M = ∂D and recall the volume functional

V =

∫

D
dV =

∫

M×[0,t]
R∗(dV ),

with first variation

δV =

∫

M
u dS .

So, (by a Lagrange multiplier argument) M is a volume-constrained
p-Willmore surface provided there is a constant C such that

p

2
∆Hp−1 − p(2H2 − K + 2k0)H

p−1 + 2Hp+1 = C .
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Volume-constrained p-Willmore (2)

Why a volume constraint?

Mimics the behavior of a lipid membrane in a solution with varying
concentrations of solute.

Acts as a “substitute” for conformal invariance in the sense that it
naturally limits the space of allowable surfaces.

Allows for certain closed surfaces to be at least “almost stable”. Note
the following result for spheres.

Theorem: G., Toda, Tran

The round sphere S2(r) immersed in Euclidean space is not a stable local
minimum of Wp under general volume-preserving deformations for each
p > 2. More precisely, the bilinear index form is negative definite on the
eigenspace of the Laplacian associated to the first eigenvalue, and it is
positive definite on the orthogonal complement subspace.
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Sketch of proof – sphere is unstable

Note the first and second variations of Wp
(
S2(r)

)
:

δWp
(
S2(r)

)
=

p − 2

rp+1

∫

S2(r)
u dS ,

δ2Wp
(
S2(r)

)
=

1

rp

∫

S2(r)

(
p(p − 1)r2

4
(∆u)2 + (p2 − p − 1)u∆u +

(p − 1)(p − 2)

r2
u2
)

dS .

Notice the first variation vanishes for volume-preserving u.

At a first eigenfunction of ∆ on S2(r), we have ∆u + (2/r2)u = 0, in
which case

δ2Wp
(
S2(r)

)
=

1

rp+2

∫

S2(r)
2u2(2− p) dS < 0, p > 2.

Conclude that the sphere is unstable when p > 2.
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Sketch of proof – cause of instability

Note the Poincare’ inequality due to Elliott et al. [2]:

Lemma: Elliott, Fritz, Hobbes

For any smooth nonconstant function u : S2(r) → R such that
u ∈ {v : ∆v = −(2/r2)v}⊥,

∫

S2(r)
u2 dS ≤ r2

6

∫

S2(r)
|∇u|2 dS ≤ r4

36

∫

S2(r)
(∆u)2 dS .

Using this, it follows that the index form satisfies

IWp(S2(r))(u, u) = δ2
∫

S2(r)
Hp dS ≥

∫

S2(r)

2p2 − 3p + 4

2r2
u2 dS

≥ C (p, r)

∫

S2(r)
u2 dS ,

for all allowed values of p.
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Computational modeling

Can also study p-Willmore surfaces in R3 experimentally by writing
appropriate weak-form equations which can be discretized using finite
elements.

Differences from the theoretical setting:

Cannot choose a preferential frame in which to calculate the
variations.

Must consider general variations, which may have tangential as well
as normal components.

Convenient to work with the identity map u : M → M on the surface,
not directly with surface immersions.

In particular, we will model the p-Willmore flow equation

u̇ = −δWp(u).
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Computational modeling (2)

Problem: Closed p-Willmore flow with volume and area constraint

Let p ≥ 2, Y = 2HN, and W := (Y · N)p−2Y . Determine a family M(t) of closed surfaces with identity
maps u(X , t) such that M(0) has initial volume V0 and surface area A0, and the equation

u̇ = δ (Wp + λV + µA),

is satisfied for all t ∈ (0,T ] and for some piecewise-constant functions λ, µ. Equivalently, if M(t) is the
image of the immersion X (t), find functions u,Y ,W ,λ, µ on M(t) such that the equations

∫

M
u̇ · ϕ+ λ(ϕ · N) + µ∇Mu : ∇Mϕ+

(
(1− p)(Y · N)p − p∇M ·W

)
∇M · ϕ

+ pD(ϕ)∇Mu : ∇MW − p∇Mϕ : ∇MW = 0,
∫

M
Y · ψ +∇Mu : ∇Mψ = 0,

∫

M
W · ξ − (Y · N)p−2Y · ξ = 0,

∫

M
1 = A0,

∫

M
u · N = V0,

are satisfied for all t ∈ (0,T ] and all ϕ,ψ, ξ ∈ H1
0 (M(t)).
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Computational modeling (3)

Note that the p-Willmore energy always decreases along the p-Willmore
flow.

Theorem: Aulisa, G.

The (unconstrained) closed surface p-Willmore flow is energy decreasing
for p ≥ 2, i.e. ∫

M(t)
|u̇|2 + d

dt

∫

M(t)
(Y · N)p = 0,

for all t ∈ (0,T ].

This is GOOD when p is even, since energy is bounded.

When p is odd, stability is highly dependent on initial energy
configuration.

Conjecture for odd p: A flow started from a surface where Wp > 0
remains so for all time.
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Results: Cube

Willmore evolution of a cube with volume constraint (left) and
unconstrained (right).
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Results: Dog

The 3-Willmore evolution of a genus 0 dog mesh constrained by enclosed
volume. Note the initial 3-Willmore energy is positive.
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Results: Knot

The Willmore evolution of a trefoil knot constrained by surface area and
enclosed volume.
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