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The Willmore energy

Let R : M → R3 be a smooth immersion of the closed surface M. Then,
the Willmore energy is defined as

W(M) =

∫

M
H2 dS ,

where H = (1/2)(κ1 + κ2) is the mean curvature of the surface.

Facts:

Critical points of W(M) are called Willmore surfaces, and arise as
natural generalizations of minimal surfaces.
W(M) is invariant under reparametrizations, and less obviously under
conformal transformations of the ambient metric (Mobius
transformations of R3).
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The Willmore energy (2)

From an aesthetic perspective, the Willmore energy encourages surface
fairing (i.e. smoothing). How to see this?

1

4

∫

M
(κ1 − κ2)

2 dS =

∫

M
(H2 − K ) dS = W(M)− 2πχ(M),

by the Gauss-Bonnet theorem.

Conclusion: The Willmore energy punishes surfaces for being non-umbilic!
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Examples of Willmore-type energies

The Willmore energy arises frequently in mathematical biology, physics
and computer vision – sometimes under different names.

Helfrich-Canham energy,

EH(M) :=

∫

M
kc(2H + c0)

2 + kK dS ,

Bulk free energy density,

σF (M) =

∫

M
2k(2H2 − K ) dS ,

Surface torsion,

S(M) =

∫

M
4(H2 − K ) dS

When M is closed, all share critical surfaces with W(M)!
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The p-Willmore energy

To model the Willmore flow, we need a good expression for the first
variation of the Willmore energy. More generally, we will consider a
generalization called the p-Willmore energy,

Wp(M) =

∫

M
Hp dS , p ∈ Z≥0.

Notice that the Willmore energy is recovered as W2.

Why generalize Willmore?

Conformal invariance is beautiful but very un-physical: unnatural for
bending energy.

W0,W1, and W2 are quite different. Are other Wp different?

Theorem: G., Toda, Tran

When p > 2, any p-Willmore surface M ⊂ R3 satisfying H = 0 on ∂M is minimal.

More precisely, let p > 2 and R : M → R3 be an immersion of the p-Willmore surface M with
boundary ∂M. If H = 0 on ∂M, then H ≡ 0 everywhere on M.
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The variational framework

This framework is due to Dziuk and Elliott [1]. Consider a parametrization
X0 : V ⊂ R2 → R3 of (a portion of) the surface M, and let u0 : M → R3

be identity on M, so u ◦ X = X .

A variation of M is a smooth function ϕ : M → R3 and a 1-parameter
family u(x , t) : M × (−ε, ε) → R3 such that u(x , 0) = u0 and

u(x , t) = u0(x) + tϕ(x).

Note that this pulls back to a variation X : V × (−ε, ε) → R3,

X (v , t) = X0(v) + tΦ(v),

where Φ = ϕ ◦ X . Note further that (since u is identity on X (t)) the time
derivatives are related by

u̇ =
d

dt
u(X , t) = ∇u · Ẋ + ut = Ẋ .
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Computational challenges

There are notable differences here from the purely theoretical setting:

Cannot choose a preferential frame in which to calculate derivatives;
no natural adaptation (e.g. moving frame) is possible.

Must consider general variations ϕ, which may have tangential as well
as normal components.

Must avoid geometric terms that are not easily discretized, such as K
and ∇MN.

Can have very irritating mesh sliding :

Later, we will see a fix for this!
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Calculating the first variation

Our goal is now to find a weak-form expression for the p-Willmore flow
equation,

u̇ = −δWp.

First, note that the components of the induced metric on M are

gij = ∂xiX · ∂xjX = Xi · Xj

so that the surface gradient of a function f defined on M can be expressed
as

(∇M f ) ◦ X = g ijXiFj ,

where F = f ◦ X is the pullback of f through the parametrization X , and
g ikgkj = δij .

The Laplace-Beltrami operator on M is then

(∆M f ) ◦ X = (∇M ·∇M f ) ◦ X =
1√
det g

∂j
(√

det gg ijFi
)
.
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Calculating the first variation (2)

Let Y := ∆u = 2HN be the mean curvature vector of M ⊂ R3. Then, the
p-Willmore functional (modulo a factor of 2p) can be expressed as

Wp(M) =

∫

M
(Y · N)p.

It is then relatively straightforward to compute the p-Willmore
Euler-Lagrange equation

p

2
∆M(Y · N)p−1 − p|∇MN|2(Y · N)p−1 +

1

2
(Y · N)p+1 = 0,

for a normal variation of Wp.

Challenges:
Express this 4th order PDE weakly.
Include the possibility of tangential motion.
Suppress derivatives of the vector N.

Possible with some clever rearrangement and a splitting technique applied
by G. Dziuk in [2].
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Finding a weak formulation

To split the p-Willmore equation into a weak form system of 2nd order PDE, first
notice that Y = ∆Mu implies

∫
Y · ψ +∇Mu : ∇Mψ = 0, ∀ψ ∈ H1

0 (M).

Letting W := (Y · N)p−2Y and D(ϕ) := ∇Mϕ + (∇Mϕ)T , a significant amount
of computation then yields the p-Willmore flow system (ϕ,ψ, ξ ∈ H1

0 (M))

∫

M
u̇ · ϕ+

(
(1− p)(Y · N)p − p∇M ·W

)
∇M · ϕ

+ pD(ϕ)∇Mu : ∇MW − p∇Mϕ : ∇MW = 0,
∫

M
Y · ψ +∇Mu : ∇Mψ = 0,

∫

M
W · ξ − (Y · N)p−2Y · ξ = 0,

which is a weak formulation of u̇ = −δWp.
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Properties of the p-Willmore flow: energy decrease

Theorem: Aulisa, G.

The (unconstrained) closed surface p-Willmore flow is energy decreasing
for integer p ≥ 2, i.e.

∫

M(t)
|u̇|2 + d

dt

∫

M(t)
(Y · N)p = 0,

for all t ∈ (0,T ].

This is GOOD when p is even, since energy is bounded from below.

When p is odd, stability is highly dependent on initial energy
configuration.

Conjecture for odd p: The p-Willmore flow started from a surface where
Wp > 0 remains ≥ 0 for all time. (Suggested by simulation)
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The p-Willmore flow problem

Problem: Closed p-Willmore flow with volume and area constraint

Let p ≥ 2, Y = 2HN, and W := (Y · N)p−2Y . Determine a family M(t) of closed surfaces with identity
maps u(X , t) such that M(0) has initial volume V0, initial surface area A0, and the equation

u̇ = δ (Wp + λV + µA),

is satisfied for all t ∈ (0,T ] and for some piecewise-constant functions λ, µ.

Equivalently, find functions u,Y ,W ,λ, µ on M(t) such that the equations

∫

M
u̇ · ϕ+ λ(ϕ · N) + µ∇Mu : ∇Mϕ+

(
(1− p)(Y · N)p − p∇M ·W

)
∇M · ϕ

+ pD(ϕ)∇Mu : ∇MW − p∇Mϕ : ∇MW = 0,
∫

M
Y · ψ +∇Mu : ∇Mψ = 0,

∫

M
W · ξ − (Y · N)p−2Y · ξ = 0,

∫

M
1 = A0,

∫

M
u · N = V0,

are satisfied for all t ∈ (0,T ] and all ϕ,ψ, ξ ∈ H1
0 (M(t)).
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How do we implement this? Algorithm:

Let τ > 0 be a fixed step-size and uk := u(·, kτ). The p-Willmore flow
algorithm proceeds as follows:

1 Given the initial surface position u0h, generate the initial curvature
data Y 0

h ,W
0
h by solving

∫

M0
h

Y 0
h · ψh +∇M0

h
u0h : ∇M0

h
ψh = 0,

∫

M0
h

W 0
h · ξh − (Y 0

h · N0
h)

p−2Y 0
h · ξh = 0.
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Algorithm: p-Willmore flow loop

2 For integer 0 ≤ k ≤ T/τ , flow the surface according to the following
procedure:

1 Solve the (discretized) weak form equations: obtain the positions ũk+1
h ,

curvatures Ỹ k+1
h and W̃ k+1

h , and Lagrange multipliers λk+1
h and µk+1

h .

2 Minimize conformal distortion of the surface mesh ũk+1
h , yielding new

positions uk+1
h .

3 Compute the updated curvature information Y k+1
h and W k+1

h from
uk+1
h .

3 Repeat step 2 until the desired time T .
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Conformal correction step 2.2: idea

To correct mesh sliding at each time step, the goal is to enforce the
“Cauchy-Riemann equations” on the tangent bundle TM.

Let X : V → ImH be an immersion of M, and J be a complex structure
(rotation operator J2 = −IdTV ) on TV . Then, if ∗α = α ◦ J is the usual
Hodge star on forms,

Thm: Kamberov, Pedit, Pinkall [3]

X is conformal iff there is a Gauss map N : M → ImH such that
∗dX = N dX .

Note that,

N ⊥ dX (v) for all tangent vectors v ∈ TV .

v ,w ∈ ImH −→ vw = −v · w + v × w .

Conclusion: conformality may be enforced by requiring
∗dX (v) = N × dX (v) on a basis for TV !
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Conformal correction step 2.2: implementation

Choose x1, x2 as coordinates on V , then:

∂1 := ∂x1 and ∂2 := ∂x2 are a basis for TV .

dX (∂1) := X1 and dX (∂2) := X2 are a basis for TM.

J ∂1 = ∂2, J ∂2 = −∂1.
∇dX (v)u = ∇vX on M.

Instead of enforcing conformality explicitly, we minimize an energy
functional. First, define

CDv (u) =
1

2

∫

M
|∇dX (Jv)u − N ×∇dX (v)u|2 =

1

2

∫

M
|∇JvX − N ×∇vX |2.

Standard minimization techniques lead to the necessary condition

δ CD =

∫

M

(
∇dX (Jv)u − N ×∇dX (v)u

)
· (∇dX (Jv)ϕ− N ×∇dX (v)ϕ

)
= 0.
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Conformal correction step 2.2: implementation (2)

So, choosing the basis {X1,X2} for TM, we enforce
∫

M

(
∇X2u − N ×∇X1u

)
·
(
∇X2ϕ− N ×∇X1ϕ

)

+

∫

M

(
∇X1u + N ×∇X2u

)
·
(
∇X1ϕ+ N ×∇X2ϕ

)
= 0.

Important: To ensure this “reparametrization” does not undo the
Willmore flow, we use a Lagrange multiplier ρ to move only on TM.

Specifically, if ∇Mh,i = ∇Mh,Xi
, we solve for uk+1

h , ρk+1
h satisfying

∫

Mk
h

ρk+1
h (ϕh · Nk

h ) +
(
∇Mk

h,2
uk+1
h − Nk

h ×∇Mk
h,1
uk+1
h

)
·
(
∇Mk

h,2
ϕh − Nk

h ×∇Mk
h,1
ϕh

)

+
(
∇Mk

h,1
uk+1
h + Nk

h ×∇Mk
h,2
uk+1
h

)
·
(
∇Mk

h,1
ϕh + Nk

h ×∇Mk
h,2
ϕh

)
= 0,

∫

Mk
h

(uk+1
h − ũk+1

h ) · Nk
h = 0.
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Conformal correction step 2.2: notes

This conformal correction is important because:

Dramatically improves mesh quality during the p-Willmore flow.

Keeps simulation from breaking due to mesh degeneration.

Mitigates the artificial barrier to flow continuation caused by a bad
mesh.

WARNING: This procedure only makes sense for quadrilateral meshes!
Edges of a triangle cannot be mutually orthogonal.
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Results: constrained vs unconstrained Willmore

Willmore evolution of a cube with volume constraint (left) and
unconstrained (right).
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Results: Non-spherical genus 0 minimizer

The Willmore flow of a cube. By constraining both surface area and
enclosed volume, the cube can no longer flow to a sphere, creating a
different minimizing surface.

Notice that the surface fairing behavior is present still in this case, and the
mesh remains nearly conformal throughout.
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Results: Horseshoe

It is not necessary to restrict to genus 0 surfaces. Here is the Willmore
flow of a horseshoe surface constrained by volume and surface area.

Note that the poor quality mesh is corrected immediately by the flow.
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Results: Knot

The Willmore evolution of a trefoil knot constrained by both surface area
and enclosed volume.
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Future work

Challenges:

Find a reasonable way to conformally correct on the surface itself, not
just its tangent space (higher-order approximation).

Extend this notion of conformality to triangular meshes.

Stabilize the p-Willmore flow for higher values of p.

Ideas to investigate:

Build conformality directly into the flow equations.

Compute a time-dependent holomorphic 1-form basis for T ∗M and
use it to conformally parametrize at each step.

Extend these ideas to other curvature flows of interest (Ricci flow,
Yamabe flow, etc.)
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