Anthony Gruber

Geometric Computing for Modeling and Approximation

Florida State University

Introduction

- * Ph.D. Texas Tech University (2015-2019).
 - * Advisors: Magdalena Toda, Hung Tran, Eugenio Aulisa.
 - * Thesis: "Curvature Functionals and p-Willmore energy."
 - * NSF Fellow at Oak Ridge National Lab (2018) in ML/DS.
- * NTT Asst. Prof. at TTU satellite in San Jose, Costa Rica (2019-2020).
 - Served as Mathematics Program Director.
- * Postdoc at Florida State University (2021-present).
 - * Data-driven sci. comp. and reduced-order modeling.
 - * Advisor: Max Gunzburger.

https://www.lib.fsu.edu/dirac

Overview

* Where does modern scientific computing benefit from geometry-informed algorithms?

Examples:

High-dimensional function approximation.

Joint: M. Gunzburger, L. Ju, Z. Wang, Y. Teng, R. Bridges, M. Verma, C. Felder, G. Zhang.

* Meshing for dynamical systems on general domains.

Joint: E. Aulisa. *

Funding: NSF MSGI; NSF DMS 1912902, 1912705; DE SC0020418, SC0022254, SC0020270.

Journal articles

- A. Gruber. "Planar Immersions with Prescribed Curl and Jacobian Determinant are Unique", Bull. Aust. Math. Soc., 1-6 (2021).
- A. Gruber, M. Gunzburger, L. Ju, Y. Teng, Z. Wang. "Nonlinear Level Set Learning for Function Approximation on Sparse Data with Applications to Parametric Differential Equations", Numer. Math. Theor. Meth. Appl., (2021).
- A. Gruber, A. Pámpano, M. Toda. "Regarding the Euler-Plateau Problem with Elastic Modulus", Ann. Mat. Pura Appl., (2021).
- . A. Gruber, E. Aulisa. "Computational p-Willmore Flow with Conformal Penalty", ACM Trans. Graph. 39, 5, Article 161 (September 2020), 16 pages.
- A. Gruber, M. Toda, H. Tran. ``On the variation of curvature functionals in a space form with application to a generalized Willmore energy", Ann. Glob. Anal. Geom. 56, 147-165 (2019).

Conference papers

- A. Gruber, E. Aulisa. "Quaternionic remeshing during surface evolution", Proceedings of the 18th ICNAAM, Rhodes, Greece, 2020, (in press).
- A. Gruber, M. Toda, H. Tran. "Willmore-stable minimal surfaces", Proceedings of the 18th ICNAAM, Rhodes, Greece, 2020, (in press).
- E. Aulisa, A. Gruber, M. Toda, H. Tran. "New Developments on the p-Willmore Energy of Surfaces", Proceedings of 21st ICGIQ, Sofia: Avangard Prima, 2020.
- R. Bridges, A. Gruber, C. Felder, M. Verma, C. Hoff. "Active Manifolds: Reducing high dimensional functions to 1-D; A non-linear analogue to Active Subspaces". Proceedings of ICML, 9-15 June 2019, Long Beach, California, USA. PMLR 97:764-772.

Submitted articles

- Y. Teng, Z. Wang, L. Ju, A. Gruber, G. Zhang. "Learning Level Sets with Pseudo-Reversible Neural Networks for Dimension Reduction in Function Approximation." (under review).
- A. Gruber, M. Gunzburger, L. Ju, Z. Wang. "A Comparison of Neural Network Architectures for Data-Driven Reduced-Order Modeling", (under review).
- A. Gruber, E. Aulisa. "Quasiconformal Mappings for Surface Mesh Optimization", (under review).
- A. Gruber, A. Pámpano, M. Toda. ``On p-Willmore Disks with Boundary Energies", (under review).
- <u>A. Gruber.</u> "Parallel Codazzi Tensors with Submanifold Applications", (under review).
- A. Gruber, M. Toda, H. Tran. "Stationary Surfaces with Boundaries", (under review).

What is a Riemannian geometry?

- "Smooth" manifold M
 equipped with "smooth"
 metric g.
- Metric g determines
 intrinsic behavior.
 - Laplacian, conformal structure
- Change in normal N determines extrinsic behavior.
 - Shape operator, mean curvature

Approximation of Functions

- * Where does geometry meet sci. comp.?
- * Real problems need measurements which are expensive (~ 10^{6+} DOFs).
 - DFT observables.
 - Disease metrics.
 - FEM/FVM consequences. *
- * Approximation benefits from *dimension* reduction.

Potential Copyright Issue

Image: https://mpas-dev.github.io/ocean/ocean.html

Two Broad Approaches

- Intrinsic: Data is *intrinsically* low-dimensional.
 - DR should exploit intrinsic features.
- * Clustering, reduced basis, etc.
- DR according to local/global data properties.

Two Broad Approaches

- * **Extrinsic:** Low-dim structure is *induced* by external mapping.
 - Structure on data imposed by objective.
- Ridge regression
- Active subspaces/manifolds
- Nonlinear level set learning

* Solve
$$\dot{\mathbf{x}} = \frac{\nabla f(\mathbf{x})}{|\nabla f(\mathbf{x})|}$$
 for known $\mathbf{x}(0) =$

- * Map $t \mapsto f(\mathbf{x}(t))$ characterizes f on $\{f^-\}$
- * If $\mathbf{y} \notin {\mathbf{x}(t)}$, $f(\mathbf{y}) = f(P(\mathbf{y})) = f(\mathbf{x}(t))$.
 - * Projection $P(\mathbf{y})$ constructed by "walking level sets".
- * AM works well:
 - * in low dimensions; when data is available.
 - * Drawback is online cost: ODE for each evaluation.

Active Manifolds

$$\mathbf{x}_0$$

$$-1\left(f(\mathbf{x}(t))\right)\}_{t\in T}$$

R. Bridges, A. Gruber, C. Felder, M. Verma, C. Hoff, ICML 2019

Nonlinear Level set Learning

* ANN-based method for EDR.

- * Introduced (NIPS 2019) by G. Zhang, J. Zhang, J. Hinkle.
- * Improved (NMTMA 2021) by our group.
- * Seek invertible transformation (RevNet) $\mathbf{z} = \mathbf{g}(\mathbf{x})$, $\mathbf{h} \circ \mathbf{g} = \mathbf{I}$.
 - * Splits domain of $f \circ \mathbf{h}$ into $\mathbf{z} = (\mathbf{z}_A, \mathbf{z}_I)$.
- * **z**-domain truncated by \mathbf{z}_A .

* Ridge regression $\hat{f}(\mathbf{z}_A) \approx f(\mathbf{x})$.

$$\int_{U} |(f \circ \mathbf{h})'|_{\perp}^{2} d\mu^{n} = \sum_{i \in I} \int_{U} (\nabla f(\mathbf{x}) \cdot \mathbf{h}_{i}(\mathbf{z}))^{2} d\mu^{n}$$

Results on Toy Examples

Function Value

NLL with Pseudo-Reversible NNs

- Reversibility of RevNet can create issues.
 - * What if level sets are closed?
- * Can consider pseudoreversible network.
- Local regression based on neighbors in input space.
- Fixes some issues with NLL. *
 - **BUT:** Needs more data.

Y. Teng, Z. Wang, L. Ju, A. Gruber, G. Zhang (under review)

Intrinsic DR: Reduced-order Modeling

- * Semi-discretization $u(x, t) =: \mathbf{u}(\mathbf{x}, t)$
 - * Creates <u>a lot</u> of dimensionality.
- * Can we approximate the solution without solving the full PDE?
- Standard is to
 encode -> solve -> decode.
 - * PDE solving is low-dimensional.

GCNN: Exact, Reconstructed, Error

A. Gruber, M. Gunzburger, L. Ju, Z. Wang, CMAME (pending revision)

Common ROM Methods

- Most popular (until recently):
 proper orthogonal decomposition
 (POD).
- * PCA on solution *snapshots* $\{\mathbf{u}(\mathbf{x}, t_j)\}_{j=1}^N$, generate **S**.
- * SVD: $\mathbf{S} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$.

* First *n* cols U_n : reduced basis.

* $\mathbf{U}_n \dot{\mathbf{u}} = \mathbf{f}(t, \mathbf{U}_n \hat{\mathbf{u}})$ replaces $\dot{\mathbf{u}} = \mathbf{f}(t, \mathbf{u})$.

Common ROM Methods

- * Next most popular: Convolutional neural network (CNN) autoencoder.
- * Improved performance over POD**.
 - * ** (In some cases)
- **BUT** slower and more difficult to train.
 - * Also more memory consumptive!
- * Now often used "by default".

Disadvantage of CNN ROMs

- * Standard CNN: not well defined for irregular data. How to use?
- * **Option 1:** Ignore the issue!
 - * Pad inputs with fake nodes until square-able.
 - * Convolve square-ified input.
 - * Reassemble at end; fake nodes ignored.
- * Works surprisingly well!
 - * But, not very meaningful.

Graph Convolutional Networks

- * **Option 2**: Use a graph convolutional network! * $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ undirected graph; adj. matrix $\mathbf{A} \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}|}$. * **D**: degree matrix $d_{ii} = \sum_{j} a_{ij}$. * Laplacian of \mathscr{G} : $\mathbf{L} = \mathbf{D} - \mathbf{A} = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^{\mathsf{T}}$. * Columns of **U** are Fourier modes of \mathcal{G} .
 - * Discrete FT/IFT: multiply by $\mathbf{U}^{\top}/\mathbf{U}$.

GC Autoencoder ROM

- * GCN2 layers (Chen et al. 2020) encode-decode.
- * Blue layers are fully connected.
- * For ROM: purple network simulates lowdim dynamics.
- * Split network idea due to (Fresca et al. 2020).

A. Gruber, M. Gunzburger, L. Ju, Z. Wang, CMAME (pending revision)

2-D Parameterized Heat Equation: Results

- * Results shown for N = 4096, n = 10.
- * GCNN has lowest error and least memory requirement (by > 10x!)
- CNN is worst..
 - * Cheap hacks have a cost!

* Consider the Schafer-Turek benchmark problem:

 $\dot{\mathbf{u}} - \nu \Delta \mathbf{u} + \nabla_{\mathbf{u}} \mathbf{u} + \nabla p = \mathbf{f},$ $\nabla \cdot \mathbf{u} = 0,$ $\mathbf{u}|_{t=0}=\mathbf{u}_0.$

* Impose 0 boundary conditions on $\Gamma_2, \Gamma_4, \Gamma_5$. Do nothing on Γ_3 . Parabolic inflow on Γ_1 .

Unsteady Navier-Stokes Equations

Navier-Stokes Equations: Full ROM

Speed |u|: Exact, Reconstructed, Pointwise Error

- * *n* = 32
- * Reynolds number 185.
- * FCNN best.
- * GCNN still beats CNN.

A. Gruber, M. Gunzburger, L. Ju, Z. Wang, (under review)

Navier-Stokes Equations: Enc/Dec only

- GCNN * matches FCNN in accuracy
- GCNN * memory cost >50x less than **FCNN**
- ***(FCNN best on full ROM)

A. Gruber, M. Gunzburger, L. Ju, Z. Wang, (under review)

PDE on Moving Domains

- Many natural phenomena modeled by conservation laws on moving surfaces.
 - Surface dissolution (pictured).
 - * Motion of surfactant films between media.
- * Various methods of solution:
 - * Level set methods.
 - * Generally implicit, stable, hard to formulate.
 - * Finite difference methods
 - * Implicit or explicit, easy to formulate, poor convergence.
 - * Evolving surface FEM.
 - * Implicit or explicit, versatile, can be delicate.

Potential Copyright Issue

G. Dziuk, C. M. Elliott, Acta Numer. (2013)

Modeling p-Willmore Flow

* p-Willmore energy: $\mathscr{M}^p(\mathbf{X}) = \left[|H|^p d\mu_g \right].$

- membrane biology, molecular entropy, liquid crystallography
- * E-L equation 4th-order QL degenerate elliptic.
 - How to model with p.w. linear FEM?
- * (G. Dziuk 2012) $\mathbf{Y} := \Delta_g \mathbf{X} = 2HN$.
 - * <u>Willmore</u> flow becomes coupled pair of 2^{nd} -order PDEs for X (weakly 1^{st} -order).

A. Gruber, E. Aulisa, ACM Trans. Graph. (2020)

Modeling p-Willmore Flow

- * Trick works for p-Willmore, too!**
 - (with some modification)
- * Yields provably dissipative scheme.
 - Including area / volume constraints.
- Bad news: mesh degenerates with large motion...
 - Parametrization invariance of *M^p* is a negative here.
- * How can we fix it?

What about the Mesh?

- * Least-squares conformal regularization!
- * $f: (M, g) \to (P, h)$ is conformal if $f^*h = e^{2\phi}g$.
- * Think $f: M \to \operatorname{Im} \mathbb{H}$.
 - * $\exists N \text{ s.t. } \star df = N df$.

(Kamberov, Pedit, Pinkall 1996).

- * Implementable.
- ∗ No explicit reference to metric!!
 (wrapped in ★).

Modeling p-Willmore Flow

- * Can minimize integral of $|\star d\mathbf{X} N d\mathbf{X}|^2$ with constraint.
 - Yields least-squares conformal maps.
- * Applied as subsystem in *W^p*-flow reparametrizes surface.
- Keeps mesh stable along the evolution.

* A. Gruber and E. Aulisa, ACM Trans. Graph. (2020)

Torus Knots Unwinding

LSCM Reparametrization: Results

- * Can also run LSC regularization on stationary surfaces.
- * Makes discretizations much nicer.
- Useful for preprocessing before sci. comp. simulations

Problems with LSCM

- Fails for explicit boundary correspondence!
- Not enough conformal maps available.
- Need to widen the search space.

Conformal vs. Quasiconformal

* Quasiconformal mappings: $\partial f = \partial f \circ \mu$ * $\mu : TM \to TM$ C-antilinear * Small *circles* map to small *ellipses*. * What is the advantage? * QC mappings are always (locally) invertible! $\operatorname{Jac}(f) = \left| \mathbf{f}_{z} \right|^{2} - \left| \mathbf{f}_{\overline{z}} \right|^{2}$ $= \left| \mathbf{f}_{z} \right|^{2} \left(1 - \left| \mu \right|^{2} \right) > 0$

Immersed Surfaces in \mathbb{R}^3

- * Conformal/anticonformal parts $f: M \to \text{Im} \mathbb{H}$: $df^{\pm} = \frac{1}{2} \left(df \mp N \star df \right)$
- * Quasiconformal iff

 $df^- = \mu \, df^+.$

* BC $\mu: TM \to \mathbb{R} \oplus \mathbb{R}N$.

* normal-valued "(-1,1)-form".

Optimal Teichmuller Mappings

 What is the "best" QC map in a given homotopy class?

* Let
$$H([f]) = \inf_{h \in [f]} \left\{ \inf_{C \in M} K(h|_{M \setminus C}) \right\},$$

where
$$K(f) = \frac{1 + |\mu|_{\infty}}{1 - |\mu|_{\infty}}$$
.

- * (*Strebel 1984*) If H([f]) < K(f) then [f] contains a unique Teichmuller mapping.
- * TM mappings have constant $|\mu|$ and min-maxed conformality distortion.

Computing TM mappings

- * Minimize $\mathcal{QC}(f) = \int_{M} |df^{-} - \mu df^{+}|^{2} d\omega_{g}$ alternatively over f, μ .
 - * 1) Minimize for f given μ .
 - * 2) Compute $\mu = df^{-} (df^{+})^{-1}$.
 - * 3) Locally adjust μ, moving it toward TM form.
 - * Repeat steps 1-3 until convergence.

Comparison: TM vs. LSCM

More Examples

Conclusions

- * Geometric relationships matter for computation!
- * My work:
 - * Informs *concrete* problems with *abstract* ideas.
 - * Investigates rigorous solutions/algorithms validated by simulations.
 - * Benefits from *collaboration* and a diverse array of expertise.
- * Projects often receive external funding.
 - * Can be expected to continue.

Thank You!