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Introduction
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❖ Thesis:  “Curvature Functionals and p-Willmore energy.”

❖ NSF Fellow at Oak Ridge National Lab (2018) in ML/DS. 

❖ NTT Asst. Prof. at TTU satellite in San Jose, Costa Rica 
(2019-2020).
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❖ Data-driven sci. comp. and reduced-order modeling.
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Overview
❖ Where does modern scientific computing benefit from geometry-informed algorithms?

❖ Examples:

❖ High-dimensional function approximation.
❖ Joint:  M. Gunzburger, L. Ju, Z. Wang, Y. Teng,  

           R. Bridges, M. Verma, C. Felder, G. Zhang.

❖ Meshing for dynamical systems on  
general domains.
❖ Joint:  E. Aulisa. 

❖ Funding:  NSF MSGI; NSF DMS 1912902, 1912705; 
DE SC0020418, SC0022254, SC0020270.
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Meth. Appl., (2021).   

• A. Gruber, A. Pámpano, M. Toda.  ``Regarding the Euler-Plateau Problem with Elastic Modulus’', Ann. Mat. Pura 
Appl., (2021). 

• A. Gruber, E. Aulisa. ``Computational p-Willmore Flow with Conformal Penalty'', ACM Trans. Graph. 39, 5, 
Article 161 (September 2020), 16 pages.

• A. Gruber, M. Toda, H. Tran. ``On the variation of curvature functionals in a space form with application to a 
generalized Willmore energy'', Ann. Glob. Anal. Geom. 56, 147–165 (2019).

• Conference papers

• A. Gruber, E. Aulisa.  ``Quaternionic remeshing during surface evolution'', Proceedings of the 18th ICNAAM, 
Rhodes, Greece, 2020, (in press). 

• A. Gruber, M. Toda, H. Tran. ``Willmore-stable minimal surfaces'', Proceedings of the 18th ICNAAM, Rhodes, 
Greece, 2020, (in press). 

• E. Aulisa, A. Gruber, M. Toda, H. Tran. ``New Developments on the p-Willmore Energy of Surfaces'', Proceedings 
of 21st ICGIQ, Sofia: Avangard Prima, 2020. 

• R. Bridges, A. Gruber, C. Felder, M. Verma, C. Hoff. ``Active Manifolds: Reducing high dimensional 
functions to 1-D; A non-linear analogue to Active Subspaces''. Proceedings of ICML, 9-15 June 2019, Long 
Beach, California, USA. PMLR 97:764-772.

• Submitted articles

• Y. Teng, Z. Wang, L. Ju, A. Gruber, G. Zhang. “Learning Level Sets with Pseudo-Reversible Neural Networks for 
Dimension Reduction in Function Approximation.” (under review).

• A. Gruber, M. Gunzburger, L. Ju, Z. Wang.  ``A Comparison of Neural Network Architectures for Data-
Driven Reduced-Order Modeling’’, (under review). 

• A. Gruber, E. Aulisa.  ``Quasiconformal Mappings for Surface Mesh Optimization'',  (under review).

• A. Gruber, A. Pámpano, M. Toda.  ``On p-Willmore Disks with Boundary Energies'', (under review).

• A. Gruber. ``Parallel Codazzi Tensors with Submanifold Applications'', (under review).

• A. Gruber, M. Toda, H. Tran. ``Stationary Surfaces with Boundaries'', (under review).



What is a Riemannian geometry?
❖ “Smooth” manifold  

equipped with “smooth” 
metric .

❖ Metric  determines 
intrinsic behavior.
❖ Laplacian, conformal structure

❖ Change in normal 
determines extrinsic 
behavior.
❖ Shape operator, mean curvature
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Approximation of Functions
❖ Where does geometry meet sci. comp.?

❖ Real problems need measurements 
which are expensive  (~  DOFs).
❖ DFT observables.

❖ Disease metrics.

❖ FEM/FVM consequences.

❖ Approximation benefits from dimension 
reduction.

106+

Image:  https://mpas-dev.github.io/ocean/ocean.html

Potential Copyright Issue

https://mpas-dev.github.io/ocean/ocean.html


Two Broad Approaches

❖ Intrinsic:  Data is intrinsically  
low-dimensional.

❖ DR should exploit intrinsic 
features.

❖ Clustering, reduced basis, etc.

❖ DR according to local/global 
data properties.



Two Broad Approaches

❖ Extrinsic:  Low-dim structure is 
induced by external mapping.

❖ Structure on data imposed by 
objective.

❖ Ridge regression

❖ Active subspaces/manifolds

❖ Nonlinear level set learning



Active Manifolds

❖
Solve    for known   .

❖ Map    characterizes    on  .

❖ If  ,    .

❖ Projection  constructed by “walking level sets”.

❖ AM works well:

❖  in low dimensions; when data is available.

❖ Drawback is online cost:  ODE for each evaluation.

·x =
∇f(x)

|∇f(x) |
x(0) = x0

t ↦ f(x(t)) f {f −1 (f(x(t)))}t∈T

y ∉ {x(t)} f(y) = f(P(y)) = f(x(t))

P(y)

R. Bridges, A. Gruber, C. Felder, M. Verma, C. 
Hoff, ICML 2019



Nonlinear Level set Learning
❖ ANN-based method for EDR.

❖ Introduced (NIPS 2019) by G. Zhang, J. Zhang, J. Hinkle.

❖ Improved (NMTMA 2021) by our group.

❖ Seek invertible transformation  
(RevNet)  ,   .

❖ Splits domain of    into   
 .

❖ -domain truncated by  .

❖ Ridge regression   .

z = g(x) h ∘ g = I

f ∘ h
z = (zA, zI)

z zA

̂f(zA) ≈ f(x)

∫U
| ( f ∘ h)′ |2

⊥ dμn = ∑
i∈I

∫U
(∇f(x) ⋅ hi(z))2 dμn



Results on Toy Examples

❖ On 40-dim  

❖ Only 100 data

sin ( |x |2 )

A. Gruber, M. Gunzburger, L. Ju, Y. Teng, Z. Wang. 
Numer. Math. Theor. Meth. Appl. (2021)



NLL with Pseudo-Reversible NNs
❖ Reversibility of RevNet can 

create issues.
❖ What if level sets are closed?

❖ Can consider pseudo-
reversible network.

❖ Local regression based on 
neighbors in input space.

❖ Fixes some issues with NLL.

❖ BUT:  Needs more data.
Y. Teng, Z. Wang, L. Ju, A. Gruber, G. Zhang (under review)



Intrinsic DR: Reduced-order Modeling

❖ Semi-discretization  

❖ Creates a lot of dimensionality.

❖ Can we approximate the solution 
without solving the full PDE?

❖ Standard is to  
encode -> solve -> decode.

❖ PDE solving is low-dimensional.

u(x, t) =: u(x, t)

A. Gruber, M. Gunzburger, L. Ju, Z. Wang, CMAME (pending revision) 



Common ROM Methods
❖ Most popular (until recently):   

proper orthogonal decomposition 
(POD).

❖ PCA on solution snapshots 
,  generate .

❖ SVD:   .    

❖ First n cols  : reduced basis.

❖  replaces .

{u(x, tj)}N
j=1 S

S = UΣV⊤

Un

Un
·û = f(t, Unû) ·u = f(t, u)



Common ROM Methods
❖ Next most popular:  Convolutional 

neural network (CNN) autoencoder.

❖ Improved performance over POD**.
❖ ** (In some cases)

❖ BUT slower and more difficult to 
train.

❖ Also more memory consumptive!

❖ Now often used “by default”.



Disadvantage of CNN ROMs
❖ Standard CNN: not well defined for irregular data.  How to use?

❖ Option 1:  Ignore the issue!

❖ Pad inputs with fake nodes until square-able.

❖ Convolve square-ified input.

❖ Reassemble at end; fake nodes ignored.

❖ Works surprisingly well!

❖ But, not very meaningful.



Graph Convolutional Networks

❖ Option 2:  Use a graph convolutional network!

❖   undirected graph; adj. matrix .

❖ :  degree matrix  .

❖ Laplacian of :   .

❖ Columns of  are Fourier modes of .  

❖ Discrete FT/IFT:  multiply by .

𝒢 = (𝒱, ℰ) A ∈ ℝ|𝒱|×|𝒱|

D dii = ∑j aij

𝒢 L = D − A = UΛU⊤

U 𝒢

U⊤/U



GC Autoencoder ROM
❖ GCN2 layers (Chen et 

al. 2020) encode-decode.

❖ Blue layers are fully 
connected.

❖ For ROM:  purple 
network simulates low-
dim dynamics.

❖ Split network idea due 
to (Fresca et al. 2020). skip connection

A. Gruber, M. Gunzburger, L. Ju, Z. Wang, CMAME (pending revision) 



2-D Parameterized Heat Equation: Results

❖ Results shown for , 
.

❖ GCNN has lowest error and 
least memory requirement 
(by >10x!)

❖ CNN is worst..

❖ Cheap hacks have a cost!

N = 4096
n = 10



Unsteady Navier-Stokes Equations
❖ Consider the Schafer-Turek 

benchmark problem: 
 

 

❖ Impose 0 boundary conditions 
on  .  Do nothing on 

.  Parabolic inflow on .

·u − νΔu + ∇uu + ∇p = f,
∇ ⋅ u = 0,
u |t=0 = u0 .

Γ2, Γ4, Γ5
Γ3 Γ1



Navier-Stokes Equations: Full ROM

❖

❖

❖ Reynolds 
number 
185. 

❖ FCNN best.

❖ GCNN still 
beats CNN. 

N = 10104

n = 32

A. Gruber, M. Gunzburger, L. Ju, Z. Wang, (under review) 



Navier-Stokes Equations: Enc/Dec only

❖ GCNN 
matches 
FCNN in 
accuracy

❖ GCNN 
memory cost 
>50x less than 
FCNN

❖ ***(FCNN best 
on full ROM)

A. Gruber, M. Gunzburger, L. Ju, Z. Wang, (under review) 



PDE on Moving Domains
❖ Many natural phenomena modeled by  

conservation laws on moving surfaces.
❖ Surface dissolution (pictured).

❖ Motion of surfactant films between media.

❖ Various methods of solution:

❖ Level set methods.
❖ Generally implicit, stable, hard to formulate.

❖ Finite difference methods
❖ Implicit or explicit, easy to formulate, poor convergence.

❖ Evolving surface FEM.
❖ Implicit or explicit, versatile, can be delicate. G. Dziuk, C. M. Elliott, Acta Numer. (2013)

Potential Copyright Issue



Modeling p-Willmore Flow

❖
p-Willmore energy:    .

❖ membrane biology, molecular entropy, liquid crystallography

❖ E-L equation -order QL degenerate 
elliptic.
❖ How to model with p.w. linear FEM?

❖ (G. Dziuk 2012)    .

❖ Willmore flow becomes coupled pair of  
-order PDEs for   (weakly -order).

𝒲p(X) = ∫M
|H |p dμg

4th

Y := ΔgX = 2H N

2nd X 1st

A. Gruber, E. Aulisa, ACM Trans. Graph. (2020)



Modeling p-Willmore Flow

❖ Trick works for p-Willmore, too!**
❖  (with some modification)

❖ Yields provably dissipative scheme.
❖ Including area/volume constraints.

❖ Bad news: mesh degenerates with 
large motion…
❖ Parametrization invariance of  is a 

negative here.

❖ How can we fix it?

𝒲p



What about the Mesh?

❖ Least-squares conformal regularization!

❖    is  
conformal if   .

❖ Think  .

❖  s.t.  . 
(Kamberov, Pedit, Pinkall 1996).

❖ Implementable.

❖ No explicit reference to metric!!  
(wrapped in ).

f : (M, g) → (P, h)
f*h = e2ϕg

f : M → Im ℍ

∃ N ⋆ df = N df

⋆



Modeling p-Willmore Flow

❖ Can minimize integral of 
 with 

constraint.

❖ Yields least-squares  
conformal maps.

❖ Applied as subsystem in -flow 
reparametrizes surface.

❖ Keeps mesh stable along the 
evolution.

| ⋆ dX − N dX |2

𝒲p

❖ A. Gruber and E. Aulisa, ACM Trans. Graph. (2020)



Torus Knots Unwinding



LSCM Reparametrization: Results
❖ Can also run LSC 

regularization on 
stationary 
surfaces.

❖ Makes 
discretizations 
much nicer.

❖ Useful for 
preprocessing 
before sci. comp. 
simulations



Problems with LSCM
❖ Fails for explicit 

boundary 
correspondence!  

❖ Not enough 
conformal maps 
available.

❖ Need to widen 
the search 
space.



Conformal vs. Quasiconformal
❖ Quasiconformal mappings:   

❖   -antilinear

❖ Small circles map to small ellipses.

❖ What is the advantage?

❖ QC mappings are always  
(locally) invertible! 
 

∂̄f = ∂f ∘ μ

μ : TM → TM ℂ

Jac( f ) = fz
2

− fz̄
2

= fz
2 (1 − μ

2) > 0



Immersed Surfaces in ℝ3

❖ Conformal/anticonformal 
parts :    
 

❖ Quasiconformal iff   
 

.

❖ BC   .

❖ normal-valued “(-1,1)-form”.

f : M → Im ℍ

df ± =
1
2 (df ∓ N ⋆ df)

df − = μ df +

μ : TM → ℝ ⊕ ℝN



Optimal Teichmuller Mappings
❖ What is the “best” QC map in a given 

homotopy class?

❖
Let    

 

where .

❖ (Strebel 1984)  If    then  
contains a unique Teichmuller mapping.

❖ TM mappings have constant | | and 
min-maxed conformality distortion.

H ([ f ]) = inf
h∈[ f ] { inf

C∈M
K (h |M∖C )},

K( f ) =
1 + |μ |∞

1 − |μ |∞

H ([ f ]) < K( f ) [ f ]

μ



Computing TM mappings

❖ Minimize 

   

alternatively over  .

❖ 1)  Minimize for    given .

❖ 2)  Compute   .

❖ 3)  Locally adjust , moving it 
toward TM form.

❖ Repeat steps 1-3 until convergence.

𝒬𝒞( f ) = ∫M
|df − − μ df + |2 dωg

f, μ

f μ

μ = df − (df +)−1

μ



Comparison: TM vs. LSCM

❖ A. Gruber, E. Aulisa (under review)



More Examples



Conclusions
❖ Geometric relationships matter for computation!

❖ My work:

❖ Informs concrete problems with abstract ideas.

❖ Investigates rigorous solutions/algorithms validated by simulations.

❖ Benefits from collaboration and a diverse array of expertise.

❖ Projects often receive external funding.

❖ Can be expected to continue.



Thank You!


